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Because miniKanren programs can run forwards and backwards, interpreters written in miniKanren can perform program

synthesis. Because program synthesis for dependently typed languages is also proof synthesis, miniKanren implementations of

dependently typed languages can be used for proof search. Unfortunately, conde ’s unaided complete interleaving depth-first

search does not yield a practical proof search due to the sheer amount of computation required. A new conditional operator,

called condp, gives users a means to drop irrelevant goals from search. We demonstrate that condp provides sufficient control

over the search process to perform synthesis far more quickly.
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1 INTRODUCTION
miniKanren, described in The Reasoned Schemer, 2nd Ed. [2018] (TRS2) by Friedman, Byrd, Kiselyov, and Hemann,

is a relational programming language. A function is a special case of a relation, so functional programs can be

readily translated into miniKanren. The process of translating a function into a miniKanren relation is called

miniKanrenization. As Byrd et al. [2017, 2012] demonstrate, miniKanrenizing functional programs makes it

possible to run programs backwards, finding elements of the domain that compute given elements of the range.

As a result, interpreters written in miniKanren are automatically program synthesis tools, and miniKanren proof

checkers are proof search tools. This power comes from the complete interleaving depth-first search performed

by miniKanren’s flagship conditional operator, conde, and the ability to place unification variables, here simply

referred to as variables, in place of expressions and proofs.

The power of miniKanren’s search comes, however, at a steep cost: the search space grows exponentially with

respect to the problem. While many miniKanren programs are small enough that the exponential growth does

not present issues, unaided search is impractical for many interesting programs. The exponential growth is a

result of disjunctions, because conde must examine each disjunct, or line in miniKanren parlance. We present a

new conditional operator for miniKanren, called condp, which allows users to preemptively recognize irrelevant

lines, and prune them from search.

During execution, miniKanren maintains a substitution, which is a data structure that associates variables with

their values. Internally, the distinctness of variables is established using allocation effects and pointer equality

tests—a typical implementation uses distinct zero-length vectors. A substitution combined with zero-length

vectors is not, however, particularly easy for most people to read. Reification is the process of building legible

values that contain all ground data associated with a variable in a substitution. When reification is performed in

full, any variables remaining in the reified term are replaced with symbols such as _0, _1, etc., for readability,

where the same symbol is given to variables that co-refer. condp allows users to perform partial reification mid-

computation, which applies the current substitution but leaves the underlying representation of fresh variables
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in the resulting values. This allows condp lines to be pruned when they are guaranteed to fail, while freshness of

variables remains known.

The effect of dropping condp lines is similar to that of using disequality constraints, described by Comon

[1990], because both methods, like unification, can limit search. Disequality constraints, however, cannot prevent

lines from being executed when performed on fresh variables, and never change the number of lines included in

search. condp lets programmers create flexible search structures, without needing effects on variables nor the

state.

When condp is used carefully, it generates the same results as conde but faster, having restricted the search

space to lines that might succeed. In addition, new search strategies become possible, such as including special-

case lines that are not always used, or multiple versions of similar lines that are never used at the same time.

With great power, however, comes great responsibility—when used without care, condp programs can betray

their conde predecessors, and fail unexpectedly if too many lines are dropped from search.

In Section 2, we describe the usage of condp and its implementation, for which an understanding of TRS2 will

suffice. In Section 3, we show runtime comparisons between condp and conde, using different miniKanrenizations

of a lightweight, dependently typed language called Pie as the example. Pie is described by Friedman and

Christiansen [2018] in The Little Typer (TLT). In Section 4, we further discuss Pie, outlining a miniKanren

implementation, and show how computation-heavy inference rules can be miniKanrenized. In dependent type

theory, a program that inhabits a type is a proof of the proposition expressed by its type, so miniKanren-style

program synthesis is also a form of proof search. Pie is complex enough, however, that conde ’s unaided complete

interleaving depth-first search is impractical. For this section, familiarities with miniKanren interpreters, inference

rules, and dependent types are assumed. We use Pie as an example, primarily because it is complicated enough

that condp is able to provide significant improvement. The version of miniKanren we use to implement Pie uses

hash tables to represent substitutions, as well as attributed variables, described by Huitouze [1990], for disequality

constraints, adding to the language described in TRS2.

All code shown can be found at https://github.com/bboskin/SFPW2018.

2 A NEW CONDITIONAL OPERATOR
We present condp, a new conditional operator, that lets users control search, with the ability to prune irrelevant
lines from search. While condp does not improve the order of time complexity, the number of (possibly recursive)

goal calls is greatly decreased, which reduces running time and space usage.

A problem with typical conditional operators that drop goals from search, like miniKanren’s conda and Prolog’s
cut, is that the order in which goals are written dictates which goals are pruned: all goals below the first line

with a sucessful first goal are pruned. With condp, however, search is restricted by user-defined functions, called

suggestion functions. Suggestion functions use partially-reified variables to decide which condp lines should

be included in search. Because suggestion functions are not written in miniKanren, they are able to use tricks

unavailable to miniKanren programs. These tricks include obtaining knowledge of variable freshness, as well as

anything useful that can be done in the host language.

Suggestion functions can be thought of as a way to tell a relation when certain condp lines are and are not

relevant. Suppose you’re walking through your town, passing many establishments, and looking for a particular

grocery store. You hope to enter as few establishments as possible other than this particular grocery store. If

you were using conde to get there, however, you’d stop in each one and make sure they weren’t your intended

destination. You might even continue to look after finding the store, with purchased groceries already in your

arms. The suggestion functions used with condp let miniKanren relations ignore irrelevant establishments, on

their way to a particular destination.
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The goal when designing suggestion functions is to convey how search would be performed by hand. When

performing informal search, paths are often left out because they will soon be irrelevant. Everything knowable

by human searchers should be expressible to miniKanren. With suggestion functions, lines that are guaranteed to

fail can be preemptively dropped from search, as would be done in a by-hand search. The fact that a line can be

used should not necessarily imply that it is used.
In addition, each condp line is given a key that allows suggestion functions to refer to lines to attempt. The

process of taking suggestions and dropping lines accordingly happens at each entrance to a condp. This results in
a search tree that is tailored to the situation at hand.

2.1 Differences in relevance
miniKanren queries run both forwards and backwards. A query runs forwards when input variables are ground
data, which is data that does not contain variables. Input variables are arguments that strongly dictate the

direction of computation, and can include proof terms, and source language expressions to evaluate. A query

runs backwards when input variables either are or contain variables.

Because the placement of variables in a query can vary, however, suggestion functions must do more than

suggest condp lines. They must discern the relative importance of variables, and favor suggestions from certain

variables as needed. Input variables are generally sufficient to guide search when queries are run forwards, and

condp recognizes this. A hierarchy of relevance for suggestions is available: there are preliminary variables

that are always considered, and there are variables that are maybe considered, only when the previous level

suggests to keep going. The result of considering variables, or applying suggestion functions to values, is a list of
suggestions.
Returning to the example of grocery shopping: suppose you know that you want to go grocery shopping at

a particular store in a town that has many stores. (This is similar to having a variable, destination, that has
ground data associated with it.) Alternatively, it may only be known that grocery shopping is the task at hand

(where destination is fresh, while another variable, task, has ground data). In this example, destination
is the variable that you always consider, and task is only maybe considered, when destination isn’t helpful.
Although knowing your task may not limit your options to a single store, it can restrict the number of stores to

consider.

Variables that aremaybe considered are only used when the keyword use-maybe is included in the suggestions

coming from the previous level. If the suggestions from the always variables include use-maybe then the first

maybe level is considered. Then, for each maybe level, if the suggestions from that level include use-maybe,
then the next maybe level is also considered. These relevance hierarchies are similar to the constraint-based

compile-time modes developed by Overton et al. [2002] for Mercury, but condp and its modes are used entirely at

runtime.

Without the ability to establish differences in relevance, optimal pruning could not coexist with generality. In

the case of interpreters, for example, the suggestion functions desired for output variables are less strict than

those for input variables, to maintain that all possible evaluations remain available. If such suggestions made

for generality were not ignorable, then more condp lines than necessary would often be suggested. Establishing

differences in relevance among variables is a crucial part of using condp, maintaining that optimal pruning is

possible, while all possible paths to solutions are preserved.

Because the goal when writing suggestion functions is to minimize the number of condp lines that are included
in search, it is easy to write suggestion functions that over-prune. When designing suggestion functions, especially

as multiple levels of relevance are in play, one needs to keep in mind what is known about each relevant variable,

and ensure that in all cases, the set of lines that might succeed is a subset of the set of lines that are actually
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(conde

(g ...)

...)

(condp

(((f x) ...) ...)

(key g ...)

...)

Fig. 1. Syntax of conde and condp

(defrel (swap -someo ls o)

(conde

((== '() ls) (== '() o))

(( fresh (a d res)

(== `(,a . ,d) ls)

(== `(,a . ,res) o)

(swap -someo d res)))

(( fresh (a d res)

(== `(,a . ,d) ls)

(== `(novel . ,res) o)

(swap -someo d res )))))

> (run∗ (q r)

(swap -someo q `(novel ,r)))

'(((novel _0) _0)

((novel _0) novel)

((_0 _1) _1)

((_0 _1) novel))

Fig. 2. Definition of swap-someo and an example query

suggested. As long as this property is ensured, programs written with condp can be trusted to behave like their

conde predecessors.
The syntax of condp and conde, shown in Figure 1, differ only slightly. Each condp line has a key at the front,

used as its identifier by suggestion functions. In addition, condp has a prelude, where all suggestion functions and

variables that should be used for suggestions are listed. Each level of relevance is wrapped in parentheses, and as

many variables as desired can be used at each level. Each tuple (f x), where f is a suggestion function and x is a

variable, becomes an application, but is performed after x has been partially reified in the current substitution.

The idea to give each line a special first element initially came from rKanren, by Swords and Friedman [2013].

rKanren has a special operator, called condr, where condr lines begin with numerical weights, which collectively

determine an ordering in which lines are executed.

2.2 An introductory example of condp

Consider the relation swap-someo , shown in Figure 2, which takes a list and swaps an uncertain number of its

elements with the symbol novel. In the first conde line, ls is the empty list, and since there are no values to

swap, o is the empty list. In the second conde line, ls is a pair, the car of ls is the car of o, and recursion is

performed on the cdr of ls, d, and the cdr of o, res. In the final conde line, the car of ls is swapped with the

symbol novel, which is the car of o, and recursion is again performed on d and res.
We now turn swap-someo into a condp relation that decreases the number of lines used for each goal expression.

To do this, we must first choose keys for the three conde lines, and then define suggestion functions using these

keys, writing one for ls and one for o. For this example, we use upper-case letters for keys, to make them stand

out. The key BASE, arbitrarily chosen, is used for the first line, which is the base case of this recursive relation;
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(define (ls-keys -init ls)

(cond

((var? ls) '(BASE KEEP SWAP))

((null? ls) '(BASE KEEP SWAP)) simplif ies to :

((pair? ls) '(BASE KEEP SWAP))

(else '(BASE KEEP SWAP ))))

(define (o-keys -init ls)

(cond

((var? ls) '(BASE KEEP SWAP))

((null? ls) '(BASE KEEP SWAP)) simplif ies to :

((pair? ls) '(BASE KEEP SWAP))

(else '(BASE KEEP SWAP ))))

(define (ls-keys ls)

(cond

((var? ls) '(use -maybe))

((null? ls) '(BASE))

((pair? ls) '(KEEP SWAP))

(else '())))

(define (o-keys o)

(cond

((var? o) '(BASE KEEP SWAP))

((null? o) '(BASE))

((pair? o)

(if (or (var? (car o))

(eqv? 'novel (car o)))

'(KEEP SWAP)

'(KEEP )))

(else '())))

Fig. 3. Suggestion functions for swap-somep

KEEP is used for the second line, where the car of ls is kept; and SWAP is used for the last line, where the car of

ls is swapped with the symbol novel. Using these keys, we define the suggestion functions shown in Figure 3.

First, we write a prototype suggestion function for ls, ls-keys-init, that always suggests every swap-somep

line, and will cause behavior that is identical to conde. Then, for any condp line that is guaranteed to fail when

ls has a certain value, that line is dropped from the list of suggestions offered in that case in the final suggestion

function, and use-maybe is used when necessary.

The reasoning for ls-keys is as follows: when ls is fresh, use-maybe is suggested, because ls has no informa-

tion, and omay have more to offer. When ls is ’(), only BASE can succeed. When ls is a pair, BASE is guaranteed
to fail, but both KEEP and SWAP can succeed. Finally, if ls is neither a variable, ’(), nor a pair, then no lines can

succeed, and the empty list of keys is returned.

Next, a similar method is applied to o, starting with a suggestion function that suggests all lines, and eliminating

those that are guaranteed to fail. Because of the way we wrote ls-keys, we also know that if o-keys is being
used, then ls is a fresh variable. (For this relation, however, we certainly could have placed o-keys in the always
category instead, and only maybe used ls-keys.)
When o is fresh, then all three lines are suggested, as they can all succeed. When o is ’(), then only BASE is

suggested. When o is a pair, however, then more analysis is needed. If its car is either the symbol novel or a fresh
variable, then both KEEP and SWAP can succeed. If the car is any other ground term, however, then only KEEP
is suggested, because SWAP is guaranteed to fail. Otherwise, no lines are suggested. The final condp definition,

swap-somep, is shown in Figure 4.

Next we show the effect that variables have on the conditional structures produced at each step of a condp,
shown in Figure 5. Consider the following query: (run∗ q (swap-somep q ‘(book novel))).
Initially, ls is fresh, and o is a list whose car is book. So, ls-keys suggests use-maybe, and o-keys, then

suggests the only line that can succeed, which is KEEP. Conceptually, the resulting goal is equivalent to Step 1 in

Figure 5.
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(defrel (swap -somep ls o)

(condp

(((ls-keys ls))

((o-keys o)))

(BASE (== '() ls) (== '() o))

(KEEP (fresh (a d res)

(== `(,a . ,d) ls)

(== `(,a . ,res) o)

(swap -somep d res)))

(SWAP (fresh (a d res)

(== `(,a . ,d) ls)

(== `(novel . ,res) o)

(swap -somep d res )))))

Fig. 4. condp definition of swap-someo

Step 1:

(conde

(( fresh (a d res)

(== `(,a . ,d) ls)

(== `(,a . ,res) o)

(swap -somep d res ))))

Step 2:

(conde

((fresh (a d res)

(== `(,a . ,d) ls)

(== `(,a . ,res) o)

(swap -somep d res)))

((fresh (a d res)

(== `(,a . ,d) ls)

(== `(novel . ,res) o)

(swap -somep d res ))))

Step 3:

(conde

((== '() ls) (== '() o)))

Fig. 5. Conditional structures for step-somep

In the resulting call to swap-somep, ls is still fresh, and o is a pair whose car is novel. So, o-keys suggests
that both KEEP and SWAP be used, reflecting the fact that novel could have been either an element of ls, or the
result of a swap. The resulting goal is conceptually equivalent to Step 2.

Finally, in the two identical recursions made in Step 2, ls is still fresh, and o is ’(). This results in a goal that

is conceptually equivalent to Step 3, and no more recursions are performed.

The definition of swap-someo written in Figure 2 begs for some simplification, however, because of the

overlapping uses of fresh between the second and third lines. One might prefer to write swap-someo as shown
in Figure 6. Check your understanding by converting the second definition of swap-someo into a relation with

nested occurrences of condp.

2.3 Another wire to connect
Chapter 10 and “Connecting the Wires” in TRS2 describe an implementation of miniKanren with only equality

constraints. To use condp, the macros shown in Figure 7 can be added to that implementation, available at

miniKanren.org, as though a part of “Connecting the Wires.”

condp expands to a goal expression, a function taking a substitution. After a substitution has been passed,

suggestions are collected using the macro collect: starting with the first list of the prelude, ((f x) ...), each
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(defrel (swap -someo ls o)

(conde

((== '() ls) (== '() o))

(( fresh (a d res)

(== `(,a . ,d) ls)

(conde

((== `(,a . ,res) o))

((== `(novel . ,res) o)))

(swap -someo d res )))))

Fig. 6. An alternate definition of swap-someo

(define -syntax collect

(syntax -rules ()

(( collect s) '())

(( collect s ((f0 x0) ...) ((f x) ...) ...)

(let ((ulos (append (f0 (walk* x0 s)) ...)))

(if (memv 'use -maybe ulos)

(append ulos (collect s ((f x) ...) ...))

ulos )))))

(define -syntax condp

(syntax -rules ()

((condp (((f x) ...) ...) (key g ...) ...)

(lambda (s)

(let ((los (collect s ((f x) ...) ...)))

((disj (if (memv 'key los) (conj g ...) fail) ...) s))))))

Fig. 7. The definition of condp

variable x is given to a function walk∗, which performs partial reification. The resulting partially-reified value is

then passed to its suggestion function, f. Typically, each x is unique, and each f is unique, but uniqueness is not

required. The suggestions gleaned from each list is an unfinished list of suggestions, ulos. If use-maybe is present

in ulos, then the complete list of suggestions includes, at a minimum, suggestions from the next relevance

level as well, and is built using recursion. If ulos does not contain use-maybe, however, then the collecting of

suggestions stops, at which point the complete list of suggestions, los, has been formed.

Using los, the suggested condp lines are put into a disjunction, while non-suggested lines are replaced with

fail, which is equivalent to dropping them entirely. In the version of condp shown in Figure 7, the dropping

of lines is only staged. By playing with the implementation, however, this can, of course be changed. Readers

who want to use condp are encouraged to experiment with these options, and to create the condp that they find

most suited to their needs! Variations that we have explored include using a helper macro to prevent introducing

extraneous fails, and replacing lists of suggestions with sets of suggestions, using Racket sets.

3 BENCHMARKING CONDp WITH IMPLEMENTATIONS OF PIE
We present some examples of the effect that well-chosen suggestion functions can have on the time taken for

miniKanren to execute a query by comparing threeminiKanren implementations of Pie. These Pie implementations
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have been developed towards the implementation using condp, and to confirm the effectiveness of condp. First,
we have developed a full implementation of Pie’s inference rules against which a backwards implementation

can be tested, but which cannot run backwards, because it uses condu, and thus is not a part of the tests shown.

Next, we have constructed Pie
e
, an implementation of a subset of the Pie language using conde, that (in theory)

performs program synthesis but (in practice) is too slow to be useful. Then, we have designed and implemented

Pie
p
, the faster implementation using condp. Finally, we have used Pie

e/c , which is Pie
e
with three added guards

using disequality constraints, which prevent serious goal calls. Comparing Pie
p
and Pie

e/c has confirmed that

Pie
p
is competitive even in the presence of miniKanren constraints. The results are shown visually in Figure 8,

and the code for the programs used can be found in Figures 15, 16, and 17 of Appendix A. Because Pie is a new

language, these programs are not provided for comprehension, but are merely provided as Pie
p
’s benchmarks.

3.1 Understanding the data
The tests are run roughly in increasing difficulty, and both Pie

e
and Pie

e/c reach a difficulty threshold beyond

which they no longer complete their execution in a reasonable amount of time. For these queries, a ‘reasonable’

amount of time is 5 minutes, although many of them have been left running for several hours and had remained

unsolved by Pie
e
. Pie

p
has such a threshold as well, when asked to synthesize nontrivial lambda terms that

satisfy proofs, because this causes lots of computation to be performed with many fresh variables, at which point

condp ’s pruning is able to do less. Such tests are not shown in these charts, however, since neither Pie
e
nor Pie

e
/c

compare with its performance at that point.

In the third and final chart, Pie
e
is left out, as it no longer completes, meaning that it had not terminated after

running for over 12 hours. These programs, however, are where Pie
p
proves itself to be faster than Pie

e/c . A
query taking 15 seconds for Pie

p
takes 30 seconds for Pie

e/c , and a query taking 90 seconds for Pie
p
takes over

600 seconds for Pie
e/c .

These comparisons show that condp is worth considering adding to the miniKanren toolkit, as it allows a

programmer’s domain-specific insights to be encoded in programs, cutting out unnecessary computation.

4 A RELATIONAL IMPLEMENTATION OF PIE’S INFERENCE RULES
A logic has three fundamental components: the subjects about which it reasons; the forms of judgment that can

be made about these subjects; and the rules, or inference rules, that permit new acts of judgment on the basis of

prior acts of judgment. Classical First Order Logic (FOL), for example, reasons about propositions, which are

built from atomic propositions and connectives such as ∧ and ⇒. FOL makes judgments about the truth and

falsity of propositions, and uses rules such as modus ponens and the principle of the excluded middle to reach

these judgments. In a dependent type theory, the subjects of reasoning are drawn from an open-ended grammar

of expressions, and the forms of judgment include that an expression is a type; that two expressions are the same

type; that one expression inhabits some type; and that two expressions are the same with respect to their type. In

dependent type theory, propositions are expressed as types, and the judgment that a proposition is true is the

judgment that another expression inhabits it.

Making a language suitable for machine implementation requires that certain aspects be made more explicit.

In the case of Pie, the explicit version of the language is specified with inference rules.

Following these rules, we have reimplemented Pie in miniKanren. While an independent implementation

increases confidence that the rules are a correct specification of the language, the choice of miniKanren as an

implementation language additionally enables synthesis where behavior is specified by types, rather than by test

cases.

Types in Pie are named by type constructors, which introduce new types. Each type in Pie may have data
constructors, often simply referred to as constructors, as well as eliminators. Constructors are the most direct
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Fig. 8. Comparing running times Piep , Piee , and Piee /c

means of producing members of the type, while eliminators expose the information underneath constructors,

allowing members of the type to be used to construct members of arbitrary other types.

The subset of Pie that we consider has six type constructors, three of which construct dependent types, which
are types that contain expressions that are not themselves types. There is no separation between the syntax of

types and the syntax of expressions in Pie. The types of this subset are:

• Atom, which is similar to Lisp’s symbols, and has an infinite number of constructors, each of which is a

symbol preceded by ', called a tick mark
• Trivial, which is Pie’s unit type, and has one nullary constructor, sole, and no eliminators

• Nat, with nullary constructor zero, unary constructor add1, and inductive eliminator ind-Nat
• =, which is a dependent type with unary constructor same, and inductive eliminator ind-=
• Π, which is a dependent type with constructor λ, and is eliminated with function application

• Σ, which is a dependent type with binary constructor cons and two unary eliminators car and cdr
• and U, short for universe, in which the constructors are the other type constructors, namely Atom, Trivial,
Nat, =, Π, and Σ.

While some of these types correspond closely to the features of languages in the Scheme family, others may

be less familiar. The equality type (= X from to) is a type whose inhabitants are proofs that from and to are
equal expressions of type X . The dependent function type (Π ((x Arд)) R) is a type whose inhabitants are
functions that take Arдs as inputs, and return Rs, where the precise argument supplied has been substituted for x
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Form of Judgment Name Meaning

Γ ⊢ expr type { expr e Typehood In Γ, expr is a type, and elaborates to expr e

Γ ⊢ expr ∈ T { expr e Checking In Γ, expr is a T , and elaborates to expr e

Γ ⊢ expr synth { (the T expr e) Synthesis In Γ, expr elaborates to expr e , and is of type T
Γ ⊢ T1 ≡ T2 type Type sameness In Γ, T1 and T2 are equivalent types
Γ ⊢ expr1 ≡ expr2 : T Sameness In Γ, expr1 and expr2 are equivalent and of type T

Fig. 9. The forms of judgment in Pie

in R. The dependent pair type (Σ ((x A)) D) is a type whose inhabitants are pairs whose cars are As, and
whose cdrs are Ds, where x has been substituted in D for the car of the pair. To maintain the logical consistency

of Pie, U is not a U.
Pie uses bidirectional typechecking [Pierce and Turner 2000], which requires that some expressions be annotated

with their types. To accommodate this, there is another form, the, which is used to add type annotations to

expressions. For example, λ expressions need type annotations to clarify the expected type of their argument. An

expression e is annotated as a T with an expression of the form (the T e).
Pie is based on the Intuitionistic Type Theory of Martin-Löf [1982, 1984]. Accordingly, the types Π and Σ

represent quantifiers. Π is interpreted as universal quantification, and Σ is interpreted as existential quantification,

where the car of a Σ is the witness and the cdr demonstrates that the witness fulfills the desired property. These

two types, in addition to the = type and the natural numbers, allow many interesting proofs to be written in this

small language.

We now show the process by which a set of inference rules can be translated to a set of miniKanren relations,

and then how such a set of relations can be merged into a single relation that represents a form of judgment, using

condp. Farka et al. [2018] provide a more formal and detailed exposition of the relationship between inference

rules of dependently typed languages and relational programs, and the translation between the two.

4.1 Judgments in Pie
There are several forms of judgment in Pie. In the judgments shown in Figure 9, Γ is a context, expr , expr e, etc.
are expressions, and T , T1, etc. are types.

Because Pie is intended to be implementable in a language in which programs run only forwards, the first three

forms of judgment explicitly separate inputs from outputs, with outputs occurring after the bent arrow,{. These

outputs are typically more-explicit versions of a corresponding input; however, the type synthesis judgment

additionally returns the type that was discovered. The process of producing a more-explicit program from a

less-explicit source text is referred to as elaboration. Adding an e
to the name of a variable, such as changing expr

to expr e, is used to convey that an expression has been elaborated (this
e
should not, however, be confused with

the
e
in conde, which stands for every). Forms of judgment without outputs are realized by programs that merely

succeed or fail, yielding no further information, while forms of judgment with outputs are realized by programs

that may fail, in which success additionally provides the output.

The first form of judgment, typehood, is that an expression is a type. A program that checks this form of

judgment is a program that succeeds when provided with a type. The second form of judgment, checking, is that

an expression can be checked to have some given type, realized by a program that returns the elaborated version

of the inhabitant on success. The third form of judgment, synthesis, is that a type can be discovered by inspecting

an expression. On success, synthesis returns the discovered type in addition to the elaborated expression.

The last two forms of judgment respectively indicate that two expressions are the same type, or when they

are the same with respect to their type. Because the sameness rules for the function type, the unit type, the pair
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Γ ⊢ mid ∈ X { mide Γ ⊢ from ≡ mide : X Γ ⊢ mide ≡ to : X
Γ ⊢ (same mid) ∈ (= X from to) { (same mide )

EqI

(1)

Γ,x : Arg ⊢ r ∈ R { r e

Γ ⊢ (λ (x) r ) ∈ (Π ((x Arg)) R) { (λ (x) r e )
FunI

(2)

Γ ⊢ a ∈ A{ ae Γ ⊢ d ∈ D[ae/x] { de

Γ ⊢ (cons a d) ∈ (Σ ((x A)) D) { (cons ae de )
ΣI

(3)

Γ ⊢ expr synth { (the X1 expr
e ) Γ ⊢ X1 ≡ X2 type

Γ ⊢ expr ∈ X2 { expr e
Switch

(4)

Fig. 10. Inference rules for checking

type, and the identity type all take types into account to enable more expressions to be the same, we implement

these rules using normalization by evaluation (NbE), described by Berger and Schwichtenberg [1991], in which

expressions are first interpreted into values that contain no latent computation, and then are read back into the

syntax of that value’s normal form. Abel [2013] describes how NbE can be used for dependent types by making

the read-back procedure take types into account to perform η-expansion. A tutorial on implementing NbE in

Racket is available from the third author’s Web site.
1

4.2 Developing a relation
The judgment that we demonstrate miniKanrenization with is checking, to be realized by checko. To judge

Γ ⊢ expr ∈ T { expr e is to judge that in a context Γ, an expression expr has type T , and expr elaborates to the

expression expr e. checko directly handles three Pie expressions: same, λ, and cons. When checko is given any

other expression, it uses syntho to synthesize a type, and then uses ≡-typeo to determine that the synthesized

and expected types are equivalent. The inference rules used to justify the type checking judgment are shown in

Figure 10, and the miniKanrenized inference rules of EqI, FunI, ΣI, and Switch are shown in Figure 11.

The first rule we miniKanrenize is EqI, which describes how checko handles same terms. The rule EqI has

three premises: first ensuring thatmid is an X , and then thatmide, the result of elaboratingmid , is equivalent to
both from and to, also of type X . Then, (same mid) is confirmed to be of type (= X from to), and elaborates

to (same mide). It is not necessary to check that from and to have type X , because the type being checked

against is assumed to have already been checked for typehood. Following this description of EqI, and assuming a

miniKanrenization of ≡, called ≡o , we define EqIo .
The order in which goals appear in a conjunction can play a large role in that conjunction’s behavior. Rozplokhas

and Boulytchev [2018] demonstrate this by improving the performance of miniKanren programs by dynamically

altering the order of goals within conjunctions, to prevent divergence. In general, however, a rule of thumb is to

always put serious goal calls, i.e., goals that involve recursions, below simple goals. This may mean doing the

last step of an inference rule earlier than would be naturally written, as with the third unification in EqIo, (==
‘(same ,mide) expre). Because inference rules are conjunctions, however, this is fine, and helps ensure that as

much information is carried into recursions as is possible, which is especially important when condp is being

used.

1
http://davidchristiansen.dk/tutorials/nbe
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(defrel (EqIo Γ expr T expre )

(fresh (X from to mid mide )

(== `(same ,mid) expr)

(== `(= ,X ,from ,to) T )

(== `(same ,mide ) expre )

(checko Γ mid X mide )

(≡o Γ X from mide )

(≡o Γ X mide to)))

(defrel (FunIo Γ expr T expre )

(fresh (x r y Arg R Rs Γ^ re Argv )

(non -reserved -Pie -symbolo x)

(non -reserved -Pie -symbolo y)

(== `(λ (,x) ,r) expr)

(== `(Π ((,y ,Arg)) ,R) T )

(== `(λ (,x) ,re ) expre )

(substo x y R Rs )

(valofo Γ Arg Argv )

(extend -Γo Γ x Argv Γ^)

(checko Γ^ r Rs re )))

(defrel (ΣIo Γ expr T expre )

(fresh (a d x A D ae Ds de )

(non -reserved -Pie -symbolo x)

(== `(cons ,a ,d) expr)

(== `(Σ ((,x ,A)) ,D) T )

(== `(cons ,ae ,de ) expre )

(checko Γ a A ae )

(substo ae x D Ds )

(checko Γ d Ds de )))

(defrel (switch -expro Γ expr T o)

(fresh (t)

(syntho Γ expr `(the ,t ,o))

(≡-typeo Γ T t)))

(defrel (switch -To Γ expr T o)

(fresh (t)

(≡-typeo Γ T t)

(syntho Γ expr `(the ,t ,o))))

Fig. 11. miniKanrenized inference rules for checko

Next, we miniKanrenize the rule FunI, for handling λ terms. FunI has one premise, which says that if in an

extended context Γ, where x is added as an Arg, the expression r checks to be an R and elaborates to r e , then in Γ,
the expression (λ (x) r) is a (Π ((x Arg)) R), and elaborates to (λ (x) r e).
For FunI, we assume the existence of a relation extend-Γo , which takes a context, a variable, and a type for

that variable, and relates them to an extended context. In our implementations of Pie, contexts hold the values of
types rather than the syntactic expressions that denote them, so the relation valofo is used to evaluate the type

Arg. valofo is the first stage of normalization by evaluation, and the second stage is read-backo, where values
are brought back to syntactic expressions that are always Pie normal forms.

In addition, there are important details left implicit in FunI that need to be explicit in its miniKanrenization.

There are new variables introduced, that need to be confirmed to be unreserved symbols. Pie’s zero, for example,

cannot be a formal parameter. We can use an assumed predicate non-reserved-Pie-symbolo, to ensure this. In

addition, although they are both x in FunI, the new lexical variables in the λ and Π expressions may be different.

These variables must be made the same, as they will now share an entry in the extended context. A relation to

perform capture-avoiding substitution, therefore, is needed, and we assume the existence of a relation substo,
which takes an expression e , a variable to replace, x , an expression to replace x with, a, and a final expression, o,
and performs substitution.

In our miniKanren implementation, substo uses gensym to create a new variable when needed. For some

relations, uses of gensym cause running backwards to be impossible. In substo, whether or not gensym is used is

driven by the input variable e , depending on whether or not a formal parameter of e occurs in the free variables

of the substitution term. The only case in which gensym could cause substo to fail is when both the input and

output expressions are ground, when a fresh variable is needed to be generated because of the input expression,

and the name of that fresh variable is decided in the output expression. Because substo is never called with two
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ground terms in the Pie implementation, however, and because substo is not a relation that users can directly use,

it is not a concern. In general, gensym cannot be used willy-nilly. Following these guidelines, we define FunIo .
Next, we miniKanrenize the rule ΣI, which handles cons pairs. ΣI has two premises, which require that the

car and the cdr of the given pair are both well-typed. Further, since the type describing the cdr is polymorphic

for any x of type A, it needs to be instantiated with the elaborated car before typechecking the cdr. When both

premises are satisfied, the pair (cons a d) elaborates to (cons ae de), and has the type (Σ ((x A)) R).
By following the description of the rule, and assuming the predicate non-reserved-Pie-symbolo, as well as

the relation performing capture-avoiding substitution, substo, we define ΣIo .
Finally, we miniKanrenize the switch rule, which is used when an expression for which a type can be

synthesized is checked. When an expression other than a same, λ, or cons expression is given to the type checker,

a type for the expression is synthesized, and the synthesized type must be equivalent to the expected type. For

this definition, we assume a miniKanrenization of type sameness.

Following these guidelines, we are left with two different definitions of switch: switch-expro and switch-To

shown in Figure 11. Both of these definitions are reasonable because the two serious goals, which use syntho

and ≡-typeo , use overlapping sets of variables.
Which of these definitions of switch yields optimal performance? Assuming that all judgments are defined

using condp, variables should always contain as much information as possible. Depending on the freshness of

expr, T , and o, syntho and ≡-typeo each can help the other perform efficient search. When expr is partially

ground, syntho needs no help and should be performed first. When expr is fresh, however, since the variable
t is also fresh if syntho is used first, and o may be fresh, there is minimal information directing the choice of

syntho lines unless ≡-typeo is performed first. IfT is partially ground, then the information gained about t using
≡-typeo can offer syntho some information. Both switch-expro and switch-To are useful, and we definitely

want to be able to use both. Because condp lets us dynamically choose between one or the other, we get to have

our Pie and eat it too.

4.3 Designing suggestion functions
Because checko ’s input expression is the most relevant variable to dictate which condp line is used, we always
use its suggestion function. When the input expression is fresh, denoted below by the predicate var?, suggestions
come from a different suggestion function that examines the other two variables together. When the input

variable is sufficiently ground, however, only one line needs to be suggested: if it is a same, λ, or a cons, then the

corresponding line is suggested, and otherwise switch-expr. The suggestion function for the input expression is

defined in Figure 12. The function expr-memv? is a generic way to see if a given value is part of a family described

by a list of forms, such as ’(same λ cons).
Using convenient keys for our condp lines allows us to streamline our suggestion functions, as is seen in the

first match line above of check-expr-table. The keys used for checko are: same, cons, λ, switch-expr, and
switch-T.

Next, we define suggestion functions for the expected type and output expression. Because the expected type

can restrict lines more than the output expression, check-T-table suggests whether or not o should be used. By

letting these variables drop irrelevant condp lines, but keeping all lines that might succeed, we get the functions

shown in Figure 13.

Now that we have the required suggestion functions defined, as well as the rules for checko defined as

miniKanren relations, we can define checko as the miniKanren relation shown in Figure 14.
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(define ((expr -memv? ls) e)

(and (pair? e) (memv (car e) ls)))

(define (check -expr -table expr)

(match expr

((? var?) '(use -maybe))

((? (expr -memv? '(same λ cons )))

`(,(car expr )))

(else '(switch -expr ))))

Fig. 12. The suggestion function for the input expression to check, with helper functions

(define (check -T-table T)

(match T
((? var?) '(use -out))

(`(= ,X ,from ,to) '(switch -T same))

(`(Π ((,x ,A)) ,R) '(switch -T λ))
(`(Σ ((,x ,A)) ,D) '(switch -T cons))

(else '(switch -T))))

(define (check -o-table e)

(match e

((? var?)

'(same λ cons switch -expr))

((? (expr -memv? check -exprs))

`(,(car e) switch -T))

(else '(switch -T))))

Fig. 13. Suggestion functions for T and o

(defrel (checko Γ expr T expre )

(condp

(((check -expr -table expr))

((check -T-table T))

((check -o-table expre )))

(same (EqIo Γ expr T expre ))

(λ (FunIo Γ expr T expre ))

(cons (ΣIo Γ expr T expre ))

(switch -expr (switch -expro Γ expr T expre ))

(switch -T (switch -To Γ expr T expre ))))

Fig. 14. Definition of checko

4.4 You can’t just follow the rules
In Pie, each syntactic form is either checked against a type or has a type synthesized for it. This uniqueness,

however, is a global property that is not mentioned in each rule. In particular, switch should not be used for same,
λ, and cons, because they are meant to be handled by the other three rules: EqI, FunI, and ΣI. This is typically
established with a miniKanren expression using disequality constraints, or can be enforced with condp. In either

method, however, information is added to the miniKanrenization that is not present in the inference rule.
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There are several advantages to using condp instead of disequality constraints to make such nuances explicit.

One is that miniKanrenized inference rules are able to remain closer in resemblance to their origins this way. The

notion of when a rule is to be used becomes part of the infrastructure of the judgment itself, rather than through

changing the meaning of a single rule, or giving extra burden to variables. The need of disequality constraints for

preventing when lines are executed can be eliminated with condp. In addition to the symbolic simplicity, condp

permits more creative experimentation with adding new lines, as they can be dropped from search when desired.

In our experimentation with Pie, we have found that constraints expected to be seen in the results of full

reification should be enforced with disequality constraints. An example of this is using symbolo to enforce that

the x in (λ (x) ...) be a symbol. Constraints used merely as guards to prevent lines from being executed for

efficiency, however, are more suited for condp.

5 CONCLUSION
The designers of search-based programming tools strive to find a balance between making a tool that is easy

to use, and one that models the smart ways in which humans approach problems. Without condp, miniKanren

achieves the first goal, and condp, only adding the work of a few small suggestion functions, brings miniKanren

closer to achieving the second goal. When faced with many options as to how to proceed towards a solution, the

first step made by humans, which is so basic that it is typically unconscious, is to forget immediately about the

options that are, for the moment, irrelevant. This is what condp gives programmers: the ability to drop irrelevant

goals from search. It does not, however, support reasoning as sophisticated as, for example, purpose-built systems

such Lindblad and Benke [2006]’s Agsy, nor does Pie
p
regularly solve proof goals as interesting as those solvable

through human-directed tactics, such as the techniques described by Chlipala [2013]. condp is easy to use, and

provides miniKanren programmers with a straightforward method to improve the search performed by conde

which, despite its innocence, pays off.

We hope that demonstrating our enhancement of search using condp leads to other novel approaches to

miniKanren operators. The capability of transitioning between miniKanren and a host language may bring about

many new or unexpected results.

Additionally, we would like to add nominal unification to this project, to improve how Pie
p
finds equivalence

between α-equivalent terms, using a method described by Ma et al. [2018].
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A CODE FOR BENCHMARKS FROM SECTION 3
In these programs, the relation pieo is an interface to the judgments of Pie, which behaves like the Pie interpreter

but is relational, rather than functional. It takes a list of Pie expressions, prog, and relates those expressions to o,
a list of the results of elaborating all expressions in prog that are not top-level definitions. In the case where all

provided expressions are top-level definitions, o will be ’(). Top-level definitions are made with claim/define
forms, which combine Pie’s claim and define forms into a single expression.

A.1 Describing the queries
Programs 1 through 4 are short Pie programs: none of them involve top-level definitions, nor inductive eliminators.

Programs 5 through 7 are slightly more involved. Program 5 uses three top-level definitions. The first definition

is a polymorphic identity function, foo, whose type is concretely given, but whose body is a variable. The second

definition is another polymorphic identity function, bar, that is entirely ground. Finally, the third is a short proof

that shows that foo and bar should behave the same, and a definition for foo is synthesized.

Program 6 uses two top-level definitions, both of which have concrete types and unknown bodies. The first type

describes a function f that takes two Nats and returns a Nat. The second type describes a proof of commutativity

of f, called f-comm. The query synthesizes both a function body for f, and a proof for f-comm.
Program 7 uses two top-level definitions. The first is arithmetic addition, +, which inductively eliminates the

first number given. The second definition is a proof that for all n, ((+ zero) n) is the same Nat as n. The proof is
entirely ground, but the definition of + has one variable in its body, the value returned when n is zero. The value

needed here is, therefore, clarified by the proof provided, and a value to finish the definition of + is synthesized.

Program 8 and Program 9 consider the same definition of + as Program 7, and a proof that for all n, ((+ n) zero)
is the same Nat as n. Using dependent types, this is a much more invovled proof than the one used in Program 7,

because it requires induction. Program 8 leaves the definition of + as a variable, and asks for an expression that

satisfies the given proof. The definition of + for Program 9 is all ground data, however, and only typechecking is

needed.

, Vol. 1, No. 1, Article . Publication date: September 2018.

https://doi.org/10.1007/BFb0024181
https://doi.org/10.29007/9x4c
https://doi.org/10.1145/571157.571169
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/3236950.3236958
http://www.schemeworkshop.org/2013/papers/Swords2013.pdf
http://www.schemeworkshop.org/2013/papers/Swords2013.pdf


• :17

1.

(run 1 (q r)

(pieo `((add1 (add1 ,q)))

`((the Nat ,r))))

'((zero (add1 (add1 zero ))))

3.

(run 1 pair

(pieo

`(((the (Π ((x Nat))

Atom)

(λ (n)

'hello))

(car ,pair ))) ;; pair is synthesized.

`((the Atom 'hello ))))

'(((the (Σ ((_0 Nat)) Nat)

(cons zero zero ))))

2.

(run 1 type

(pieo

`(((the ,type ;; type is synthesized.

(λ (x)

x))

(add1 zero )))

'((the Nat (add1 zero )))))

'(((Π ((_0 Nat)) Nat)))

4.

(run 1 q

(pieo

'(((the

(Π ([x (Σ ([x Nat])

(= Nat x x))])

Nat)

(λ (pr)

(car pr)))

(the (Σ ([x Nat])

(= Nat x x))

(cons (add1 zero)

(same (add1 zero ))))))

q))

'(((the Nat (add1 zero ))))

Fig. 15. Small examples of Pie evaluation
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5.

(run 1 fun

(pieo

`((claim/define bar

(Π ((X U))

(Π ((x X)) X))

,fun) ;; fun is synthesized.

(claim/define foo

(Π ((X U))

(Π ((x X))

X))

(λ (X)

(λ (x) x)))

(claim/define foo=bar

(Π ((Z U))

(Π ((z Z))

(= Z ((foo Z) z)

((bar Z) z))))

(λ (A)

(λ (a)

(same a)))))

'()))

'(((λ (x) (λ (x) x))))

6.

(run 1 (fun proof)

(pieo

`((claim/define f

(Π ((n Nat))

(Π ((m Nat))

Nat))

,fun) ;; fun is synthesized.

(claim/define f-comm

(Π ((n Nat))

(Π ((m Nat))

(= Nat ((f n) m)

((f m) n))))

,proof)) ;; proof is synthesized.

'()))

'(((λ (m) (λ (var) zero))

(λ (_0) (λ (_1) (same zero )))))

7.

(run 1 base

(pieo

`((claim/define +

(Π ((n Nat))

(Π ((m Nat))

Nat))

(λ (n)

(λ (m)

(ind -Nat n

(λ (n) Nat)

,base ;; base is synthesized.

(λ (x)

(λ (res) (add1 res )))))))

(claim/define +-zero -l

(Π ((n Nat))

(= Nat n ((+ zero) n)))

(λ (n) (same n))))

'()))

'((m))

Fig. 16. Examples of syntheses driven by types
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8.

(run 1 body

(pieo

`((claim/define +

(Π ([n Nat])

(Π ([m Nat])

Nat))

(λ (n)

(λ (m)

,body ))) ;; fun is synthesized

(claim/define +-zero -r

(Π ([n Nat])

(= Nat n

((+ n) zero )))

(λ (n)

(ind -Nat n

(λ (n)

(= Nat n

((+ n) zero )))

(same zero)

(λ (n-1)

(λ (IH)

(ind -= IH

(λ (?)

(λ (_)

(= Nat (add1 n-1)

(add1 ?))))

(same (add1 n -1)))))))))

'()))

'(n)

9.

(run 1 q

(pieo

`((claim/define +

(Π ([n Nat])

(Π ([m Nat])

Nat))

(λ (n)

(λ (m)

(ind -Nat n

(λ (z) Nat)

m

(λ (n-1)

(λ (res)

(add1 res )))))))

(claim/define +-zero -r

(Π ([n Nat])

(= Nat n ((+ n) zero )))

(λ (n)

(ind -Nat n

(λ (n)

(= Nat n ((+ n) zero )))

(same zero)

(λ (n-1)

(λ (IH)

(ind -= IH

(λ (?)

(λ (_)

(= Nat (add1 n-1)

(add1 ?))))

(same (add1 n -1)))))))))

'()))

'(_0)

Fig. 17. Longer Pie evaluations involving +
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B SOLUTION TO THE EXCERCISE AT THE END OF SECTION 2.2
An alternate swap-somep , using nested condps.

First, suggestion functions for the outer and inner condps:

(define (ls-keys -outer ls)

(cond

((var? ls) '(use -maybe))

((null? ls) '(BASE))

((pair? ls) '(REC))

(else '())))

(define (o-keys -outer o)

(cond

((var? o) '(BASE REC))

((null? o) '(BASE))

((pair? o) '(REC))

(else '())))

(define (ls-keys -inner ls)

(cond

((var? ls) '(use -maybe))

(else '(KEEP SWAP ))))

(define (o-keys -inner o)

(cond

((var? o) '(KEEP SWAP))

((pair? o)

(if (or (var? (car o))

(eqv? 'novel (car o)))

'(KEEP SWAP)

'(KEEP )))

(else '())))

Then, the final definition of swap-somep with nested condps, using the above suggestion functions:

(defrel (swap -somep ls o)

(condp

(((ls-keys -outer ls))

((o-keys -outer o)))

(BASE (== '() ls) (== '() o))

(REC (fresh (a d res)

(== `(,a . ,d) ls)

(condp

(((ls-keys -inner ls))

((o-keys -inner o)))

(KEEP (== `(,a . ,res) o))

(SWAP (== `(novel . ,res) o)))

(swap -somep d res )))))
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