
Overcoming Obstacles to Test-Driven Learning on Day One

John Clements
Department of Computer Science

Cal Poly State University
San Luis Obispo, USA

clements@brinckerhoff.org

David Janzen
Department of Computer Science

Cal Poly State University
San Luis Obispo, USA
djanzen@calpoly.edu

Abstract—We describe the preliminary construction of a
web-based tool for test-driven learning in the first weeks of
programming. We discuss obstacles to test-driven learning—
both pragmatic and ideological—and describe the ways that
we believe our tool overcomes these obstacles.

I. INTRODUCTION

“Develop a function.” We do it every day, and our students
do, too. For many of them, though, this is a new experience,
and they must learn this skill. What are the first steps
in developing a function? Test-driven learning[1], [2], [3]
suggests that a disciplined design process starts with a clear
mental model, and that the best way to make this model
concrete is to write down examples: examples of what the
function accepts, and what the function would then produce.

Using a computer, though, we can do more than sim-
ply write down examples in a human language; we can
express these examples as test cases, that can be checked
mechanically. Running these test cases verifies that the
program behaves as the test cases indicates, but test-driven
learning (TDL) suggests that this is not their principal utility;
rather, the process of formulating examples in a way that is
sufficiently concrete to be testable requires the designer to
think ahead of time about the structure of the function.

Furthermore, the structure that the students deduce during
this process is not that of the code—what loops go where,
which statements are evaluated first—but rather of the
function itself. How are the inputs related to the outputs?
What groups of inputs produce related outputs? In short,
what is the structure of the function itself? TDL argues
that this understanding of the problem moves students from
an understanding of a program as a sequence of machine
operations to an understanding of a program as a model for
a desired function.

Unfortunately, TDL is difficult to deploy. There are a
parade of obstacles in the path of a teacher who wishes to
train his students to think this way. In order to simplify this
process, we are in the process of building a tool that aims
to eliminate nearly all of these obstacles. An early version
is now running—tentatively named “Smootxes”, at http:

Work supported by NSF Grant DUE-0942488

//smootxes.org:8001/go.ss—and in this paper we describe
what we believe to be the major obstacles to the deployment
of TDL, and the ways in which our tool addresses these
problems.

The next section describes our reasons for deciding to
build this tool for the web. Section III shows screenshots of
the tool as the students move through the earliest stages.
Sections IV through VII describe obstacles and potential
solutions. We conclude with future and related work.

II. A WEB-BASED TOOL

For a tool such as this one, a web-based design has many
advantages.

A. Ease of Deployment

One of the most significant hurdles in any programming
education is that of installation and maintenance of software.
This is particularly true at the elementary- and secondary-
school level (K-12), where the teachers have no time and
minimal institutional support.

For these settings, web-based tools—those that require
only a network connection and a browser—are clear winners.
Installing an IDE for programming work is just barely
feasible, and requiring additional installation work to add
test-driven learning tools often is not. Curiously, web-
based development environments have been slow to emerge,
though they are now becoming more common.

Accordingly, our tool takes the form of a web application.
Users interact with a server by entering text into text
boxes in response to challenges. Currently, evaluation of the
user’s code is performed on the server side for simplicity.
Naturally, this solution doesn’t scale well, but it does have
the advantage of placing minimal requirements on the client
hardware, an advantage in classrooms with extraordinarily
underpowered computers.

B. Ease of Use

Another problem with many IDE’s is the complexity of
their user interfaces. Environments such as Eclipse have
panels within panels, and evaluating a piece of code may
require choosing from a drop-down menu attached to a

button that is easily overlooked. This environment is an ex-
cellent one, but it is not designed for first-time programmers.
The simplest interface we’re aware of is DrScheme’s[4],
which provides users with only four buttons: “Step”, “Check
Syntax”, “Run”, and “Stop”.

Our tool follows this lead still further; in its current
state, its only button is “submit” (see Figure 1 below). This
is possible because—in the early stages of learning—user
interaction follows the model of “answering a question,”
rather than “designing a program.” Our aim is to carry this
simplicity forward, always presenting users with the simplest
interface that allows them to complete their tasks efficiently.

C. Persistence

Beginning students often struggle to transfer their pro-
gramming work between “lab machines” and their home
computers. A web-based tool eliminates this problem, mak-
ing it possible simply to walk away from one computer and
continue working on another one.

D. Logging

Another advantage of web-based programming tools is the
ability to compile extensive statistics on student experience.
What exercises are difficult for students? Are there common
mistakes that a rewording would solve? Do students do their
work ahead of time, or right at the last minute?

E. Instructor Collaboration

Web-based tools make it easier for instructors to collabo-
rate. Specifically, a tool such as ours contains a repository of
exercises. Instructors that can pick and choose from existing
exercises to build a problem set and contribute their own to
the pool will cause the set of available exercises to grow
rapidly and be adopted widely.

F. Internet Connection

The primary disadvantage of deploying a web-based tool
is the requirement for “always on” internet connectivity. In
this age of ubiquitous computing and educational investment
in technological infrastructure, we see this as a disappear-
ing issue. However, we are careful to design for minimal
bandwidth requirements.

III. AN EXAMPLE

In order to better understand the choices that we’ve made
and to frame the discussion for the rest of the paper, we
show a number of screenshots from our web application.

A. First Interaction

Figure 1 shows an early interaction, where students are
learning to enter numbers and combine them into expres-
sions. Observant readers will surely notice that the tool uses
the PLT Scheme language. We will defer a discussion of
language choice to later sections, but we should state at the

Figure 1. Learning to enter numbers and call numeric functions

outset that our goal is to provide exercises for a range of
different languages.

We should also point out that the pedagogic orientation
of this example is taken largely from How To Design
Programs[5], which uses test-driven-learning extensively.

Smootxes uses an interactive question-and-answer format.
Students complete each question before going on to the next
one. However, they can return at any time to an earlier
problem, and continue from that point instead.1 Smootxes
capitalizes on the tightly controlled environment to provide
focused error feedback. In this particular example, for in-
stance, placing the + in the middle elicits the message shown
in Figure 2.

Figure 2. Focused error messages

Fortunately, since Smootxes is attached to an existing
evaluator, the exercise-writer is not obliged to provide code
to evaluate the student’s expression. The evaluator’s results
may be passed directly to the student.

B. Developing Tests

Within four or five interactions, Smootxes requires stu-
dents to start thinking in a test-driven way. Specifically,

1This is enabled by the use of a continuation-based web server[6]

Figure 3. Learning to enter numbers and call numeric functions

students must design an example for a simple time-to-school
function that consumes a number and produces a number.
Students enter the application and the expected value in
separate boxes, as shown in Figure 3.

Figure 4. Writing examples as test cases

Again, the tightly controlled environment makes it possi-
ble to provide focused and helpful feedback.

Next, students must learn how to represent an example and
an expected value together as a test case. Figure 4 shows this
transition.

From here, students will learn how to express the formula
that computes the answer, and how to represent this formula
as a program. For instance, a student might wind up with
this definition:

;; time-to-school : number → number
;; computes the time required to get to school
(define (time-to-school kms)
(+ 10 (∗ kms 5)))

After writing the definition itself, Smootxes will verify
that the student’s definition causes the test cases to pass.

IV. TEST SYNTAX: SIMPLER IS BETTER

Learning to program is hard. Why make it harder, by
requiring students to learn additional syntax in order to
express their test cases? This is the most commonly stated
objection to test-driven learning—and to testing in general.

We agree completely with this sentiment, and we feel that
the fault lies not with the idea of testing, but rather with the
imposition of complex frameworks that require students to
couch their test cases in several layers of syntax.

Our tool illustrates the idea that test cases need not be
syntactically complex. At a bare minimum, a test case must
include

1) Some indication that it’s a test case,
2) an expression to be evaluated, and
3) a desired result.

These requirements are satisfied handily both by PLT
Scheme’s check-expect and by JUnit’s assertEquals.

Unfortunately, using assertEquals in the context of a
typical IDE requires lots of extra baggage. Here are the first
15 lines of the template provided by BlueJ for the creation
of test cases:
//add import statements here
/**
* The test class MyTestCases.

*
* @author (your name)

* @version (a version number or a date)

*/
public class MyTestCases extends junit.framework.TestCase
{

/**
* Default constructor for test class MyTestCases

*/
public MyTestCases()
{
}

...

Adding a test case requires an additional layer of syntactic
wrapping:

public void testAddition(){
assertEquals(4,3+1);

}

All of this verbiage is justified and indeed vital for a large
project that needs source tracking and javadoc. However, it
will give a first-year student serious pause.

The problem, though, is not JUnit’s design; rather, it is the
one-size-fits all attempt to cast the relatively straightforward
problem of writing test cases into the much more complex
problem of formulating a class containing a library of testing
methods. Any solution that requires students to read and
edit complex blocks of code in order to write test cases will
almost certainly wind up derelict.

By contrast, An IDE that allows students to write test
cases in a straightforward way with negligible syntactic
overhead has at least a fighting chance of making students
“test-infected.”

A. TDL in the classroom
Test-driven learning is a wonderful addition to the class-

room, as well. This topic is beyond the scope of this paper,
but it’s worth noting that the syntactic simplification that
makes it possible for students to formulate test cases is
even more valuable when instructors use it in the classroom,
where all of the code must fit on a whiteboard or a slide.
Modeling test-first behavior in the classroom is one of the
best ways to ensure that students can replicate the process
at home.

V. TDL AND I/O
Test-driven learning has an uneasy relationship with I/O.

In many environments, it is difficult to formulate test cases
for code that “crosses the process boundary” by interacting
with ports.

A. Test Forms for I/O

In part, we have a solution to this problem. That is, we
have developed a check-with-input form that allows users
to formulate tests for code that reads from a port, or writes
to a port.

Specifically, the check-with-input form evaluates its ex-
pression in a context where input is taken from the given
string. For instance, we might test a read-first-word method
by writing:

(check-with-input "abc def" (read-first-word) "abc")

By the same token, check-with-output checks to see
whether its expression evaluates to the given value and
produces the required output. For instance, we might test
a method that prints “moo” and returns 3 by writing:

(check-with-output (print-moo) 3 "moo")

B. The Larger Problem

These test forms are fine for testing programs that read
input and that produce output, but they are not adequate to
model a sequence of interactions with a user. For instance,
it may be that students are implementing a simple moon-
lander game that shows the user the state of a moon lander
and then requires him or her to indicate how much fuel to
use in the next “turn.”

The underlying problem with testing a program like this
one is that it’s extraordinarily hard to specify its behavior
cleanly. For instance,

1) The program should always eventually respond to a
user’s input.

2) The program should not use part of the “last answer”
to answer this turn’s question (easy to do with input
streams).

3) The program should not continue until the user has
responded.

Programs with properties like these are not within the reach
of simple testing, and it’s because they’re not modeling
simple mathematical operators that map inputs to outputs
in a fixed way.

Put differently, these programs make use of effects.

VI. EFFECTFUL PROGRAMMING

Programs with effects are difficult to test, and (cor-
respondingly) can contain subtle bugs. The prior section
contained one example, that of a program using I/O to
communicate with an outside user.

There is another large category of effects that lead to
programs that are difficult to test, difficult to write, and
difficult to debug: mutation. That is, programs that change
the values of variables and/or class fields from one value to
another.

Programs that perform mutation are a part of many first-
year curricula, and it would likely be fruitless to argue that

mutation does not belong there. Instead, we would simply
like to draw attention to the difficulty of testing methods
that perform mutation.

For instance, consider a queue, written in a traditional
style, with an enqueue and a dequeue method. If the enqueue
method returns nothing (PLT Scheme calls this (void),
students might write this test case:

(check-expect (enqueue (new-queue empty) 14) (void))

... and that would be a valid test case, as far as it goes.
However, it would fail to capture the important effect caused
by the enqueue method, specifically the addition of 14 to the
queue. Moreover, in the context of TDL, a student that has
written this particular test case has probably not yet given
much thought to the full meaning of the method.

A more exhaustive test case might read:

(define my-queue (new-queue empty))
(check-expect (enqueue my-queue 14) (void))
(check-expect my-queue (new-queue (list 14)))

This test ensures both that the result of enqueueing 14 is
(void), and also that the resulting queue contains the element
14. Moreover, this test fits well with test-driven learning, and
indicates that the student has given some thought to what
the state of the queue should be after the call to enqueue.

So, effectful programs are more difficult to test: is this a
problem with testing, or a problem with effectful programs?
Perhaps the diplomatic answer is simply that teachers who
wish to use test-driven learning might be well-advised to
choose problems without effects in the early stages of
learning.

VII. EXTENSIONAL EQUALITY TESTING

The prior section’s example highlights another important
property of a testing framework: the ability to perform
extensional equality testing. An extensional equality test is
one that checks behavior, rather than identity.

Specifically, the final test case in the block above com-
pares the student’s queue, my-queue, with a fresh queue
containing only 14, (new-queue (list 14)). In JUnit, for
instance, we might write this test as:2

assertEquals(new Queue(Seq.sequence(14)),
myQueue);

This test case will fail, unless the developer of the Queue
class has equipped it with an equals method that checks the
values of the fields for equality. The default equals method
instead performs an intensional equality check, comparing
the two pointers directly.

Many teachers gamely embrace this challenge, training
students to write equals methods for all of their classes.
However, in the context of early learning, the need to define

2We assume the existence of a Seq.sequence static method that
constructs an ArrayList containing the desired elements.

equality methods in all classes greatly intensifies the pain of
testing and programming in general.

Unsurprisingly, our web tool performs extensional equal-
ity testing in order to avoid this problem.

Perhaps more surprisingly, it turns out that extensional
equality checking is not incompatible with Java. Viera
Proulx[7] provides a Tester library that uses the reflection
API to allow extensional equality testing on user-defined
classes.

VIII. FUTURE WORK

Our work is just beginning, and the list of features
that we’re looking forward to adding is lengthy. Among
these, though, are several that promise to be interesting. We
comment on a number of these below.

A. Java Challenges

Our tool currently teaches students how to write Scheme
expressions and tests. How would the tool be different if it
were targeting Java?

Again, our goal is to keep things as simple as possible.
That is, we can imagine translating the examples above as
directly as possible. So, for instance, (+ 3 4) becomes 3 +
4, and (time-to-school 3) becomes timeToSchool(3). Aside
from the minor overhead in showing two different syntactic
conventions for infix and prefix functions, these examples
are straightforward.

In a similar way, we anticipate translating uses of check-
expect directly into uses of assertEquals, or Viera Proulx’s
checkExpect.

Other things will be more difficult. Should the students
be required to develop constructors, or to provide public and
protected annotations? Our hope is that a gentle introduction
will ease the students into these requirements, though Java
is not a language that lends itself to syntactic simplification.

A related problem is that of interpreting error messages.
Any system that translates (compiles) user code into another
language must somehow map that other language’s error
messages back into terms that the student can understand.
Even when the “translation” consists only in placing the
student’s code within a class wrapper, it is common to find
examples where the error messages refer to locations within
the non-student code.

B. TDL and Coverage

One of the golden opportunities of a TDL tool such as
Smootxes is the ability to use coverage information to drive
test case feedback. For instance, consider a function that
merges two sorted lists. A student might supply this test
case:

(check-expect (merge-lists (list 1 4 7) (list 6)))

By running this test case against an instructor-supplied
definition, Smootxes might discover that this test case fails to

cover the case of the first list being shorter than the second.
This kind of feedback could potentially help students to
better understand the domain of inputs, and how to make
sure that they’ve considered all of the possible inputs.

C. Stepping

Another opportunity for Smootxes is a potential collabo-
ration with DrScheme’s stepper[8]. The stepper (one of us
is the author of this tool) shows the evaluation of student
code as a series of reduction steps. Figure 5 shows a simple
step using this tool.

Figure 5. Reducing expressions to values

D. A Scripting Language

The success of a tool like Smootxes will hinge in large
part upon its ability to allow teachers to design their own
lessons and write their own exercises. This requires more
than simply writing two or three blocks of text, though;
an exercise must parse a user’s code to provide feedback,
rewrite it in some way, associate it with pre-written defini-
tions, run it, and then analyze the result to provide feedback.

Our existing tool therefore contains a quantity of code for
each exercise. As we develop more exercises, we expect to
be able to discern patterns and discover a domain-specific
language[9], [10] for expressing these exercises concisely.

E. Bridging the Gap

A tool such as Smootxes is merely a stepping stone. If
students are to build larger programs and move beyond the
sheltered waters of its one-button interface, they will need
to transfer their knowledge to a traditional IDE, and to a
setting where a program consists of source files, makefiles,
scripts, and command-line tools. A tool like Smootxes will
be most useful to students and teachers if it provides a
smooth transition to existing development environments.

F. Evaluation

As our tool evolves, it will be critical to conduct experi-
ments on students to validate the tool’s utility.

IX. RELATED WORK

TDL builds on the ideas in Meyer’s work on Design by
Contract [11], and was inspired by the Explanation Test [12]
and Learning Test [12] testing patterns proposed by Kent
Beck, Jim Newkirk, and Laurent Bossavit.

The approach of requiring students to write tests in lab
and project exercises has a number of predecessors. Bar-
riocanal [13] documented an experiment in which students

were asked to develop automated unit tests in programming
assignments. Christensen [14] proposes that software testing
should be incorporated into all programming assignments in
a course, but reports only on experiences in an upper-level
course. Patterson [15] presents mechanisms incorporated
into the BlueJ [16] environment to support automated unit
testing in introductory programming courses. The How To
Design Programs textbook [5] requires students to formulate
examples before writing code. Edwards [17] has suggested
an approach to motivate students to apply TDD that in-
corporates testing into project grades, and he provides an
example of an automated grading system that provides useful
feedback. A number of early adopters have successfully
incorporated TDD into first year programming courses [18],
[19].

A variety of web-based tools exist to support learning to
program, from static lab exercises to applets that let you
interact with data structures. Recently, more advanced web-
based tools have begun to emerge, including WeScheme[20],
JavaBat, ELP[21], and turingscraft. Smootxes brings an extra
ingredient to this mix, in the form of test-driven learning.

Finally, outside of programming, Koedinger[22] has
amazing results in the mathematical domain.

REFERENCES

[1] D. S. Janzen and H. Saiedian, “Test-driven learning: intrinsic
integration of testing into the cs/se curriculum,” in Proceed-
ings of the 37th SIGCSE technical symposium on Computer
science education. New York, NY, USA: ACM, 2006, pp.
254–258.

[2] D. Janzen and H. Saiedian, “Test-driven learning in early
programming courses,” in Proceedings of the 39th SIGCSE
technical symposium on Computer science education. New
York, NY, USA: ACM, 2008, pp. 532–536.

[3] C. Desai, D. S. Janzen, and J. Clements, “Implications of
integrating test-driven development into CS1/CS2 curricula,”
in Proceedings of the 40th ACM technical symposium on
Computer science education. New York, NY, USA: ACM,
2009, pp. 148–152.

[4] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krish-
namurthi, P. Steckler, and M. Felleisen, “Drscheme: A pro-
gramming environment for Scheme,” Journal of Functional
Programming, vol. 12, no. 2, pp. 159–182, 2002.

[5] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi,
How To Design Programs. MIT Press, 2001.

[6] S. Krishnamurthi, P. W. Hopkins, J. McCarthy, P. T. Graunke,
G. Pettyjohn, and M. Felleisen, “Implementation and use
of the plt scheme web server,” Higher-Order and Symbolic
Computing, vol. 20, no. 4, pp. 431–460, 2007.

[7] V. K. Proulx, “Test-driven design for introductory OO pro-
gramming,” in Proceedings of the 40th ACM technical sym-
posium on Computer science education, 2009, pp. 138–142.

[8] J. Clements, M. Flatt, and M. Felleisen, “Modeling an
algebraic stepper,” in Proceedings of the 10th European
Symposium on Programming, ser. Lecture Notes in Computer
Science, D. Sands, Ed., vol. 2028. Springer, 2001, pp. 320–
334.

[9] J. Bentley, “Little languages,” Communications of the ACM,
pp. 711–721, August 1986.

[10] J. Clements, M. Felleisen, R. Findler, M. Flatt, and S. Krish-
namurthi, “Fostering little languages,” Dr. Dobb’s Journal,
pp. 16–24, March 2004.

[11] B. Meyer, “Applying “Design by Contract”,” IEEE Computer,
vol. 25, no. 10, pp. 40–51, 1992.

[12] K. Beck, Test Driven Development: By Example. Addison-
Wesley, 2003.

[13] E. Barriocanal, M. Urb’an, I. Cuevas, and P. P’erez, “An
experience in integrating automated unit testing practices in
an introductory programming course,” ACM SIGCSE Bulletin,
vol. 34, no. 4, pp. 125–128, December 2002.

[14] H. B. Christensen, “Systematic testing should not be a topic
in the computer science curriculum!” in Proceedings of the
8th Annual ITiCSE Conference. ACM Press, 2003, pp. 7–10.

[15] A. Patterson, M. Kolling, and J. Rosenberg, “Introducing unit
testing with BlueJ,” in Proceedings of the 8th Annual ITiCSE
Conference. ACM Press, 2003, pp. 11–15.

[16] M. Kolling and J. Rosenberg, “Guidelines for teaching object
orientation with java,” in Proceedings of the 6th Annual
ITiCSE Conference. ACM Press, 2001, pp. 33–36.

[17] S. Edwards, “Rethinking computer science education from a
test-first perspective,” in Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications: Educators’ Symposium,
2003, pp. 148–155.

[18] K. Keefe, J. Sheard, and M. Dick, “Adopting XP practices
for teaching object oriented programming,” in ACE ’06:
Proceedings of the 8th Austalian conference on Computing
education. Darlinghurst, Australia: Australian Computer
Society, Inc., 2006, pp. 91–100.

[19] G. Melnik and F. Maurer, “A cross-program investigation
of students’ perceptions of agile methods,” in ICSE ’05:
Proceedings of the 27th international conference on Software
engineering. New York, NY, USA: ACM, 2005, pp. 481–
488.

[20] D. Yoo, B. Hickey, E. Schanzer, and S. Krishnamurthi.
Wescheme. [Online]. Available: www.wescheme.org

[21] N. Truong, P. Bancroft, and P. Roe, “A web based environ-
ment for learning to program,” in ACSC, ser. CRPIT, M. J.
Oudshoorn, Ed., vol. 16. Australian Computer Society, 2003,
pp. 255–264.

[22] K. Koedinger and V. Aleven, “Exploring the assistance
dilemma in experiments with Cognitive Tutors,” Educational
Psychology Review, 2007.

