
Mixed Approaches to CS0:
Exploring Topic and Pedagogy Variance After Six Years of CS0

Zoë J. Wood, John Clements, Zachary Peterson, David Janzen, Hugh Smith, Michael Haungs,
Julie Workman, John Bellardo, Bruce DeBruhl

Computer Science - California Polytechnic State University
San Luis, Obispo, CA

zwood,clements,znjp,djanzen,husmith,mhaungs,workmen,bellardo,bdebruhl@calpoly.edu

ABSTRACT
Since 2010, the Cal Poly Computer Science Department has required
computing majors to select from a variety of CS0 courses to start
their academic year. The broad objective of the course is to attract
and retain undergraduates that have no prior experience in CS
by using authentic problems that demonstrate the relevance and
highlight the role of computers in solving “real world” problems.
The course is offered in a variety of thematic “flavors” that leverage
a student’s pre-existing interests (e.g. in music or art), but all share
the common goals of introducing students to the basics of program-
ming, teamwork, and college-level study. While there is overlap in
overall goals, the courses vary drastically in topic matter (e.g. robot-
ics, gaming, music, computational art, mobile apps, security) and
in pedagogical approach (e.g. principles of design, project-based
student driven learning, and traditional topic-based programming
modules). The introduction of this CS0 course has increased stu-
dents’ commitment to their major and success in follow-on classes.
We present these successes and show that student GPAs in a follow-
on object oriented programming course do not vary significantly
for the differing subtopics and teaching pedagogies employed in
the various flavors. Our report includes examining two student
subgroups (those experienced with programming and those new
to programming). Our evaluations suggest that the existence and
goal of the course matter more than the specific content, with all
subtopics and pedagogical approaches performing well.

KEYWORDS
Introductory programming, computer science education, CS0, re-
tention
ACM Reference Format:
Zoë J. Wood, John Clements, Zachary Peterson, David Janzen, Hugh Smith,
Michael Haungs, JulieWorkman, John Bellardo, Bruce DeBruhl . 2018. Mixed
Approaches to CS0:: Exploring Topic and Pedagogy Variance After Six Years
of CS0. In Proceedings of SIGCSE ’18: The 49th ACM Technical Symposium
on Computer Science Education (SIGCSE ’18). ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3159450.3159592

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159592

1 INTRODUCTION
Student success and retention in introductory computer science
courses is a nationwide issue [2]. To address first-year retention,
since 2010, the Cal Poly Computer Science Department has required
students in computing majors to select from a menu of CS0 courses
to start their academic year. These CS0 courses, entitled “CPE123:
Introduction to Computing,” have a shared goal of introducing
students to the basics of computing, teamwork, and college-level
study through the lens of some pre-existing, personal interest. The
courses vary in topic matter or ‘flavor’ (e.g. robotics, gaming, music,
computational art, security, mobile apps) and employ a mix of
teaching pedagogies (e.g. How to Design Programs (HtDP), all team
work, traditional topic-based programming modules).

Each freshman cohort of computer science (CS), software en-
gineering (SE), and computer engineering (CPE) majors (approx-
imately 250 students each fall) must take our CS0 course. Each
section is limited to an enrollment size of approximately 30 stu-
dents, meaning that eight to ten sections of CS0 are taught, with
five to six of the possible topic flavors being offered. Students select
their preferred topic within enrollment and scheduling restrictions.
Subsequent courses in the computing curriculum introduce stu-
dents to programming more formally, and use a more consistent
course pedagogy (material, style, and development environment)
across the numerous sections (again 8-10). Specifically, students
follow our CS0 course with three traditional programming classes,
our ‘CS1’ Introduction to Programming, taught in Python, our ‘CS2’
Introduction to Object Oriented Programming, taught in Java, and
our ‘CS3’ Introduction to Data Structures, taught in Java. 1

This paper reports on the positive impact that the inclusion of a
CS0 course may have had on student graduation rates and students’
attitudes towards computer science. We also explore whether the
variance in topic and pedagogy affects student success in follow-
on courses. Specifically, we report on the variance in students’
GPAs for each CS0 flavor in subsequent courses and pass rates
in these classes. Our evaluations suggest that the existence and
goal of the CS0 course matters more than the specific content,
with all subtopics and pedagogical approaches performing well. In
addition, we examine the success of two student subgroups (those
experienced with programming and those new to programming),
with respect to success in follow-on courses and find that once
again, even for these two subgroups, each of the flavors of CS0
do equally well in preparing the students for subsequent courses.
These explorations include data from six years of these course
offerings (2011-2016).

1As of this writing, the ordering of this sequence is changing.

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

20

https://doi.org/10.1145/3159450.3159592
https://doi.org/10.1145/3159450.3159592

2 CS0 GOALS, TOPICS AND PEDAGOGY
In all the CS0 course sections, students engage with core computer
science principles through constructivist, open-ended assignments.
At a high level, the course aims to: (1) teach core computer science
principles and tools, providing a foundation and context for more
traditional, introductory CS coursework, (2) explore those core
concepts through the lens of some pre-existing interest, contextual-
izing, and making relevant, often complex topics, and (3) remove
barriers commonly attributed to poor CS engagement, including
isolation and exclusion, a lack of social relevance, and limitations
on creativity. In all sections, no prior programming experience is
assumed.

All instructors hold that the following methodologies/ideologies
are essential to the course:

• Context based introduction to computing
• Project based learning
• Learn by doing via lab work
• Group work
• Relating CS topics to real-world problem
• Individual creativity in assignments

Outside of these shared goals, each flavor of the CS0 course has
been individually created and is taught by a computing faculty
member with interest and expertise in that topic. The topic material
of the courses varies widely, along with programming environ-
ment and pedagogical approach. Over six years, the courses and
instructors have varied slightly, but with core topics and teaching
methodologies have been fairly consistent. Table 1 highlights some
of the teaching methodologies that are valued for each of the fla-
vors. The individual topics and teaching methodologies used in
each section are briefly described here, with variance in language
and development environment emphasized for quick comparisons,
along with instructors individual perceptions of the most distin-
guishing/unique feature of their flavor of CS0:

2.1 Computational Art
Students in this course explore the relationship of visual aesthetics
and computation. Students design and write interactive animated
computer programs. By applying computational thinking, math-
ematics, art and design principles, and principles of animation,
students create artistic and expressive computer programs. This
course is an introduction to computer graphics and animation in
two dimensions, the fun and easy way. The main development en-
vironment is Processing (both Java and javascript, p5.js have been
used).

Course pedagogy: This course employs a topic-based intro-
duction to computing with each topic rooted in the relevance of
the associated artistic computational assignment. For example, stu-
dents are introduced to loops when exploring the artistic principle
of texture and the art movement of pointillism and impressionism.
Group work and sharing is used regularly throughout the class
to help build community along with pair programming for labs
and a final project that can be completed individually or as a team
(with most students choosing to work in a team). [15]. One of the
most distinguishing features of this flavor is the strong emphasis on
creativity and the creative process related to art, design and personal
expression.

2.2 Games
The course on game design explores computing and software de-
velopment by creating a full-featured computer game. This course
includes an overview of the development process of games and an
introduction to gaming fundamentals: logic, story and game play.
The course focuses on design, teamwork, and using an iterative de-
velopment process. Students learn basic programming skills in order
to develop a simple 2D game using an object-oriented language, most
frequently Java and the Greenfoot game development environment.

Course pedagogy:The course is rooted in an individual student-
driven learning process and project-based learning. Teams are
formed early in the class and constructed to provide an educa-
tional support system for its members. In the first half of the course,
students complete a series of structured programming assignments
designed to provide a basic understanding of both Java and the
Greenfoot game development environment and, in the second half,
further advanced topics (pathfinding, collision detection, anima-
tion) are explored based on the requirements of their team’s game.
Students follow an iterative development process cycling through
the following steps: prototyping, playtesting, evaluation and refine-
ment. Both user testing and Agile-based progress updates are key
components of the course. The course provides traditional lecture-
based learning in teaching game design theory and a flipped-model
format for programming instruction. One of the most distinguishing
features of this flavor is the large quarter-long project and 15 page
paper requirement.

2.3 Mobile computing
The course focused on mobile computing started with Android
development; due to an instructor change, it switched to iOS in 2013.
Students explore computing and software development by creating
apps for Android or iOS-based mobile devices. Students work in
teams to imagine, design, prototype, build, test, and launch apps
for the Android or iOS market. Students gain hands-on experience
with the languages and tools needed to build Android/iOS apps,
and test their apps on the appropriate device. For Android, students
learned using AppInventor in the first four weeks, then Java in the
final six weeks. iOS students use either Objective-C or more recently,
Swift.

Course pedagogy: This course is a mix of traditional topic-
based introduction and team project-based learning. Students com-
plete weekly labs in pairs or individually, and complete projects in
pairs or larger groups up to five students. One of the most distin-
guishing features of this flavor is the fact that students are able to
create mobile apps very quickly in first week, thenmove to professional
tools to build an app of their own choosing.

2.4 Music
In the CS0 course focused on music, students write programs that
generate music. Early compositions focus on the elements of west-
ern harmony. Later ones allow students to explore timbre and digital
sound processing. Students work collaboratively in teams to design,
develop, and test their programs and compositions. The course fo-
cuses on design, teamwork, and the use of an iterative development
process. The course is intended to be an enjoyable introduction to
both computer science and elementary composition. This course

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

21

Table 1: Some of the key methods employed in the various 123 sections other then the universal methods mentioned. A star
denotes that this methodology is considered: "Predominantly" important, while a checkmark denotes "Somewhat important".

Pedagogy Comp. Art Games Mobile Music Robotics Security
community building ✓ ✓ ✓

flipped model ✓ ⋆
individual creativity ⋆ ⋆ ⋆ ⋆ ✓ ✓
individual learning ⋆ ✓ ✓

lecture based learning ⋆ ✓ ⋆ ✓
pair programming. ✓

student feedback (polling) ✓ ⋆ ✓ ⋆
student reflections (journal, etc.) ✓ ⋆ ⋆

team projects ⋆ ⋆ ⋆ ⋆ ✓
test 1st design (Htdp) ⋆ ⋆
topic based intro to CS ⋆ ✓ ✓ ⋆ ✓

closely follows the ‘How to Design Programs’(HtdP) [6] curriculum
and uses Racket as a programming language.

Course pedagogy: The HtdP curriculum is built on several
pillars. First, it puts forward a concrete design recipe with six steps
to help carry students from problem statement to solution. Second,
it focuses on test-first design, and students following the design
recipe are required to specify a function’s mapping from inputs to
outputs with executable test cases. Third, it is algebraic, eschewing
state and mutation in order to make functions composable and
testable. Fourth, it is data-driven, categorizing problems using the
data that they consume, and showing how to use the specifications
of each kind of data to construct function templates that guide
the students’ thinking. Midway through the course students are
gathered into teams of three or four, with whom they complete
their assignments for the remainder of the quarter including a team
final project. Students participate in weekly reflection surveys in
order to allow them to consolidate knowledge and identify issues.
One of the most distinguishing features of this flavor is the use of the
HdtP design recipe.

2.5 Robotics
This course is focused on embedded systems and robotics and is
structured such that students explore computing, hardware and
software development by designing and implementing an embedded
system such as a robot or an Internet of Things solution. Students
work in teams to imagine, design, prototype, build, and test their
own embedded system solution. The robot used in the curriculum
uses an Arduino microcontroller and the students implement their
control software using C.

Course pedagogy: The course includes lectures taught in a
flipped format, required labs and a quarter-long design project. The
course lecture and lab focus on implementing a wheeled robot. For
the flipped lecture format the students are given videos, reading
material and quizzes to work on outside of the normal lecture
period. Then lecture period is dedicated to individual and group
activities that help students master the material which is then used
in lab to implement the hardware and software to control their
robot. All students also implement a quarter-long design project
(for example an embedded system to help the elderly). [14]. One

of the most distinguishing features of this flavor is that the course is
taught in a flipped manner, with the quarter long project based on
service to others.

2.6 Security
In the CS0 course focused on security, students learn the funda-
mentals of computer science through a hands-on exploration of
computer security. Specific security topics include: cryptography,
authentication, software security, web security, social engineering,
digital forensics, and network security. The content is presented
in a unique way, using techniques drawn from alternate-reality
games (ARGs) [7]. ARGs are designed to encourage players to col-
laboratively uncover and interpret fragments of a story, distributed
across multiple forms of media, using the “real world” as its plat-
form.Modules are designed to be solved using a variety of approaches,
including computer programming (e.g. port scanning for hidden web
services), social engineering (e.g. fooling the instructor into entering a
flag into a student-designed phishing website), and physical security
(e.g. picking a lock, used on a locker containing a cell phone used for
two-factor authentication).

Course pedagogy: The course is organized into modules that
explore a different security topic, supported by a set of core CS prin-
ciples. Students are organized into groups of four, where teammem-
bers work together throughout the quarter, and prior experience
in CS is accounted for, and distributed among the teams. Instruc-
tion follows a process-oriented guided inquiry learning (POGIL)
approach, where students are encouraged to explore a topic, with
only occasional guidance from the instructor. In addition to tech-
nical exercises, students are regularly prompted to reflect on their
individual experiences. These responses are used for identifying
technical misconceptions, social problems within the group, degen-
erative cases in the challenges, and bugs in the infrastructure.One
of the most distinguishing features of this flavor is the use of an AR
game and narrative based assignements in the instruction.

3 RELATEDWORK
The initial development of the CS0 course at Cal Poly is described in
an earlier paper [13], with many of the core driving principles of the

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

22

course founded on related work [1, 5, 12]. For instance, allowing
students to start their computing career via different flavors or
topics is not unique to our CS0 course [3, 4, 8–10]. Georgia Tech
has done excellent work on long term studies of their menu-based
introduction to computing [11], examining attitudes towards each
track and their varied success.

This work confirms the positive outcomes associated with start-
ing with a context based CS introductory course and suggests a
framework for evaluating whether mixed CS0 courses that employ
differing topics or pedagogy correlates with the student success in
follow-on course. Specifically, we report that there was no statisti-
cally significant difference in GPAs in follow-on classes for students
in the differing flavored CS0 courses in our setting.

4 EXAMINING STUDENT SUCCESS
Broad success
After six years of teaching our CS0 course, statistics indicate that the
course has contributed to positive outcomes in terms of graduation
rates, student attitude, and subsequent student grades. All the CS0
course instructors, and indeed the entire CS faculty, believe the
course is an important addition to our curriculum.

In terms of the long term success of the CS0 course, graduation
rates have increased for all computing majors from those in 2009
(prior to the introduction of the CS0 course). Table 2 shows the
increase in graduations rates (4 year and 5 year) for all computing
majors. Note that SE graduation rates are more volatile as they are
a smaller population with cohort sizes ranging from 31-54 students,
versus 79-159 CS majors and 77-124 CPE majors during the relevant
graduation time period (2009-2012).

In addition, to increased graduation rates, surveys showed that
students’ self-efficacy in, and attitudes towards, their major im-
proved. When the students were surveyed after the follow-on data
structures course (CS3), of the cohort that did not take our CS0
course (prior to its requirement), only 39% “strongly agreed” that
they were excited about computer science, while of those who did
take our CS0 course, 47% “strongly agreed” that they were excited
about computer science. Similarly, only 76% of those who did not
take CS0, but 83% of those who did reported seeing the relevance
of CS to their future career.

We also saw an increase in the number of ‘A’ grades in the
follow-on data structures course from 18% for those who did not
take our CS0 course to 24% for those who did have the CS0 course.
One result that did not show strong improvement was the fact
that students still found computer science “harder,” “more tedious,”
“more antisocial,” and “less important to society”. This hints at the
limitation and dangers of selling computer science to be something
it is not.

Success in follow-on courses
Given the broad success of the CS0 course, we further examined
whether the topic and/or pedagogy of the different flavors reflects
any variance in student success in subsequent courses. Our unique
setting, with each major cohort of approximately 250 students tak-
ing different flavors of CS0, but then all later taking more consistent
follow-on programming classes, allows us to examine whether the

topic and pedagogy make a difference in student success in subse-
quent traditional computer science courses.

In our exploration of students’ experiences in our early courses,
we also considered ways to examine student experience based on
their prior programming knowledge. To this end, we have divided
the entering freshmen into two subgroups, those who have pro-
gramming experience and those who do not. These two subgroups
are distinguished based on whether the student has any type of AP
computer science score (regardless of the score’s numeric value)
with 443 students of the total 1834 having an AP CS score reported.

Over the course of 2011-2017, 1835 students took our CS0 course.
Of these, 1577 students (87%) either passed CS1 in their first attempt
or were given credit for it. The number of students passing CS2 in
their first attempt or getting credit for it was 1476 (80%). Note that
the second set is not a subset of the first, because some students that
failed CS1 in their first attempt passed CS2 in their first attempt.

See Figure 1 for an overview of the pass rates per flavor in the
follow-on programming courses, over six years. These figures show
that all flavors of CS0 courses are performing similarly well in terms
of preparing students to pass the subsequent programming courses.
These figures are divided into two populations, those students took
and passed the CS AP exam in high school and those who did not.

Density of GPAs
Early analysis of our CS0 courses shows that overall student GPAs
tend to drop from when the students enter the next more formal
programming course. This is not surprising since each CS0 course
was intended to be an ‘easy and fun’ introduction to computing.
However, it was noted that there was a variance in the GPA drop
experienced by students coming from the various sections. Students
transitioning from the music flavor consistently experienced the
lowest GPA drop (For example, the average GPA drop for all sections
2011, 2012 and 2013 was -.89%, -.59% and -.91% respectively, while
the drop for those in the music section for those same years was
-.45%, -.33% and -.27%. This is also reflected in the average retention
through our CS2 (OOP) class (i.e. those who received a passing
grade), with those in the music section passing CS2 at a rate of
76.4%, while the average pass rate for all sections was 71%. This
led to some of the initial work to examine student success in the
various CS0 flavors.

In considering whether a specific CS0 section was indeed a better
course, we examined the GPA distributions of 1154 students who
went on to receive a grade in follow-on programming classes (after
two quarters in Object Oriented Programming). We also looked at
grade variation for the students after only one quarter (in Introduc-
tion to Programming). Note that although we have been teaching
the CS0 course since 2010, there have been other changes to the
intro series courses (i.e. a switch from C to Python in the Intro-
duction to Programming, etc.), however, we primarily are focused
on examining student success in follow on programming courses
given starting out in a particular CS0 flavor.

Figure 2 shows the GPA density plot for the different CS0 flavors
in the follow-on CS1, for cohorts for the years 2011-2016. All grades
are reported for students who did not have an AP CS score (as AP
CS students do not take this course). Though there are differences in
the GPA densities, ANOVA shows no significant variance (p-value

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

23

Table 2: Graduation rates before and after the introduction of CS0

major 4 year Graduation rates prior 2010 cohort 2011 cohort 2012 cohort
computer science 17.1% 27.8% 29.6% 34.6%

computer engineering 21.8% 36.4% 30.6% 25.4%
software engineering 22.6% 19.0% 29.4% 33.3%

majors 5 year Graduation rates prior 2010 cohort 2011 cohort 2012 cohort
computer science 51.7% 62.0% 66.7% no data

computer engineering 47.8% 61.8% 66.7% no data
software engineering 66.7% 51.2% 71.4% no data

curriculum

gr
ad
e

Art Gaming Mobile Music Robotics Security

B
A
IL
E
D

FA
IL

P
A
S
S

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

curriculum

gr
ad
e

Art Gaming Mobile Music Robotics

B
A
IL
E
D

P
A
S
S

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: The top figure shows pass/fail rates for the vari-
ous CS0 courses for the follow-on two programming courses
for students with an AP computer science score. The bottom
figure shows the same data but for students with no AP CS
score. Dark grey shows the population that did not take a
follow on course, mid-grey shows those who failed one of
the courses and light grey, the majority, shows those who
passed. The width of each bar corresponds to the number of
students who took each flavor of CS0, for example, 466 stu-
dents took the computational art flavor versus 136 students
took security (a relatively new offering).

of .449), suggesting that students from the different flavored CS0
courses perform similarly in the follow-on programming course.
Figures 3 shows the distribution of the grades in our object oriented

GPA of non-AP student in 101GPA of non-AP student in 101GPA of non-AP student in 101GPA of non-AP student in 101GPA of non-AP student in 101GPA of non-AP student in 101GPA of non-AP student in 101GPA of non-AP student in 101GPA of non-AP student in 101

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

000000000 222222222 444444444
000000000

.1.1.1.1.1.1.1.1.1

.2.2.2.2.2.2.2.2.2

.3.3.3.3.3.3.3.3.3

.4.4.4.4.4.4.4.4.4

mobilemobilemobilemobilemobilemobilemobilemobilemobile
musicmusicmusicmusicmusicmusicmusicmusicmusic
securitysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecurity
gaminggaminggaminggaminggaminggaminggaminggaminggaming
roboticsroboticsroboticsroboticsroboticsroboticsroboticsroboticsrobotics
artartartartartartartartart

Figure 2: Density plot of GPAs for students from the various
flavored CS0 courses in the follow-on ‘Introduction to Pro-
gramming’ course for students with noAPCS score. ANOVA
shows no significant variance (p-value of .449).

programming course (two quarters after our CS0 course) for the
two groups of students for the the years 2010-2015. Although there
is variance between the grade distributions, ANOVA analysis and
Chi-squared analysis showed p-values too large to conclude that
any particular section’s GPA distribution was significantly different
then the others. In all of these graphs, students that elected not
to take the course are considered to have earned a GPA of 0.0,
except for those that went on to take a later course in the first-year
sequence, who are assumed to have bypassed this requirement
either through an AP score or by taking the course elsewhere.

5 CONCLUSIONS AND FUTUREWORK
We have presented our explorations of six years of teaching CS0 as
a first course for computing majors. Overall, we have experienced
that this course is beneficial to our department, contributing to an
increase in graduation rates, improvements in students’ attitudes to-
wards their major and overall increase in GPAs in follow-on courses.
In addition, the unique setting with faculty able to employ various
pedagogy and unique material has created a fertile grounds for
faculty growth. In a recent survey of the participating faculty (nine
in total), 77% said that they had adopted many to a few different

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

24

GPA of AP student in 102GPA of AP student in 102GPA of AP student in 102GPA of AP student in 102GPA of AP student in 102GPA of AP student in 102GPA of AP student in 102GPA of AP student in 102GPA of AP student in 102

de
n
si
ty

o
f
A
P

st
u
d
en
ts

w
it
h
th
is

G
P
A

d
en
si
ty

of

A
P

st
ud
en
ts

w
it
h

th
is

G
P
A

de
n
si
ty

o
f
A
P

st
u
d
en
ts

w
it
h
th
is

G
P
A

de
n
si
ty

o
f
A
P

st
u
d
en
ts

w
it
h
th
is

G
P
A

de
n
si
ty

o
f
A
P

st
u
d
en
ts

w
it
h
th
is

G
P
A

de
n
si
ty

o
f
A
P

st
u
d
en
ts

w
it
h
th
is

G
P
A

d
en
si
ty

of

A
P

st
ud
en
ts

w
it
h

th
is

G
P
A

de
n
si
ty

o
f
A
P

st
u
d
en
ts

w
it
h
th
is

G
P
A

d
en
si
ty

of

A
P

st
ud
en
ts

w
it
h

th
is

G
P
A

-2-2-2-2-2-2-2-2-2 000000000 222222222 444444444 666666666
000000000

.2.2.2.2.2.2.2.2.2

.4.4.4.4.4.4.4.4.4

.6.6.6.6.6.6.6.6.6

.8.8.8.8.8.8.8.8.8

mobilemobilemobilemobilemobilemobilemobilemobilemobile
musicmusicmusicmusicmusicmusicmusicmusicmusic
gaminggaminggaminggaminggaminggaminggaminggaminggaming
securitysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecurity
roboticsroboticsroboticsroboticsroboticsroboticsroboticsroboticsrobotics
artartartartartartartartart

GPA of non-AP student in 102GPA of non-AP student in 102GPA of non-AP student in 102GPA of non-AP student in 102GPA of non-AP student in 102GPA of non-AP student in 102GPA of non-AP student in 102GPA of non-AP student in 102GPA of non-AP student in 102

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

de
ns
it
y

of

no
n-
A
P

st
ud
en
ts

w
it
h
th
is

G
P
A

-2-2-2-2-2-2-2-2-2 000000000 222222222 444444444 666666666
000000000

.1.1.1.1.1.1.1.1.1

.2.2.2.2.2.2.2.2.2

.3.3.3.3.3.3.3.3.3

.4.4.4.4.4.4.4.4.4
mobilemobilemobilemobilemobilemobilemobilemobilemobile
musicmusicmusicmusicmusicmusicmusicmusicmusic
gaminggaminggaminggaminggaminggaminggaminggaminggaming
securitysecuritysecuritysecuritysecuritysecuritysecuritysecuritysecurity
roboticsroboticsroboticsroboticsroboticsroboticsroboticsroboticsrobotics
artartartartartartartartart

Figure 3: Density plot of GPAs for students from the vari-
ous CS0 courses in the follow-on ‘Object Oriented Program-
ming’ course. The top graph shows, all grades for students
who entered college with an AP CS score. ANOVA shows no
significant variance (p-value: .815). The lower graph shows
all grades for students who did not have an AP CS score.
ANOVA shows no significant variance (p-value: .581).

teaching strategies based on hearing what other instructors were
doing in their sections. One of the most commonly listed practices
that was adopted was the weekly reflections/journaling. Some of
the faculty comments about the structure include: "It is great to
exchange ideas and try to adopt practices that work well in other
sections without getting stuck debating the technical minutia." and
"I like comparing notes and brainstorming pedagogical approaches;
I like that we have a potential to measure and evaluate the efficacy
of our varied practices". For a field, renown for language wars, it has
been liberating for our faculty to do their ’own’ thing and see that
all of the students can be prepared via very different approaches.

We examined student success in follow-on courses both in terms
of pass and fail rates and GPA distribution and have found that no
single flavor of our CS0 course is statistically outperforming the

others. This finding in many ways is positive as it demonstrates
that no single topic or pedagogy for CS0 of the six variations being
used is significantly better. This implies that continuing with all
the various flavors and teaching methodologies is appropriate and
that any school considering CS0 options could select similar topics
and pedagogy to the six presented here.

In the future, we would like to have a more refined subgroup
selection process as we acknowledge that many students who do
not have an AP score, could have substantial computing experience
via summer camps, robotics clubs, etc. In addition, we acknowledge
the limitation of drawing conclusions from this exploration. Our
graduation rates have increased, but so has the overall popular-
ity of computer science. In addition, this examination gave us an
opportunity to think about how we can measure student success
and whether any of our teaching pedagogies are perhaps more
successful than others (certainly, it is appealing to discover if there
is one right way to teach intro CS). We wish to continue to expand
our understanding of which factors contribute the most to student
success and retention.

REFERENCES
[1] Christine Alvarado and Zachary Dodds. 2010. Women in CS: an evaluation of

three promising practices. In Proceedings of the 41st ACM technical symposium on
Computer science education. ACM, 57–61.

[2] Jens Bennedsen and Michael E. Caspersen. 2007. Failure rates in introductory
programming. SIGCSE Bull. 39 (2007), 32–36.

[3] Elizabeth Bonsignore, Kari Kraus, Amanda Visconti, Derek Hansen, Ann Fraistat,
and Allison Druin. 2012. Game design for promoting counterfactual thinking. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

[4] Robert Bryant, Richard Weiss, Genevieve Orr, and Kathie Yerion. 2011. Using the
Context of Algorithmic Art to Change Attitudes in Introductory Programming.
J. Comput. Sci. Coll. 27, 1 (Oct. 2011), 112–119. http://dl.acm.org/citation.cfm?id=
2037151.2037177

[5] Zachary Dodds, Ran Libeskind-Hadas, Christine Alvarado, and Geoff Kuenning.
2008. Evaluating a breadth-first cs 1 for scientists. InACM SIGCSE Bulletin, Vol. 40.
ACM, 266–270.

[6] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2001. How to Design Programs: An Introduction to Programming and
Computing. MIT Press, Cambridge, MA, USA.

[7] M. Gondree and Z.N.J. Peterson. 2015. This is Not a Game: Early Observations
on Using Alternate Reality Games for Teaching Security Concepts to First-Year
Undergraduates. In Proceedings of theWorkshop on Cyber Security Experimentation
and Test (CSET).

[8] Ira Greenberg, Deepak Kumar, and Dianna Xu. 2012. Creative Coding and
Visual Portfolios for CS1. In Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education (SIGCSE ’12). ACM, New York, NY, USA, 247–252.
https://doi.org/10.1145/2157136.2157214

[9] Mark Guzdial. 2006. Teaching Computing for Everyone. J. Comput. Sci. Coll. 21,
4 (April 2006), 6–6. http://dl.acm.org/citation.cfm?id=1127389.1127390

[10] Mark Guzdial. 2010. Does Contextualized Computing Education Help? ACM
Inroads 1, 4 (Dec. 2010), 4–6. https://doi.org/10.1145/1869746.1869747

[11] Mark Guzdial. 2013. Exploring Hypotheses About Media Computation. In Pro-
ceedings of the Ninth Annual International ACM Conference on International
Computing Education Research (ICER ’13). ACM, New York, NY, USA, 19–26.
https://doi.org/10.1145/2493394.2493397

[12] Susanne Hambrusch, Christoph Hoffmann, John T Korb, Mark Haugan, and
Antony L Hosking. 2009. A multidisciplinary approach towards computational
thinking for science majors. In Proceedings of the ACM technical symposium on
Computer science education.

[13] Michael Haungs, Christopher Clark, John Clements, and David Janzen. 2012.
Improving first-year success and retention through interest-based CS0 courses.
In Proceedings of the ACM Technical Symposium on Computer Science Education.

[14] H. Smith. 2016. An Embedded SystemDesign Experience for First Year Computing
Majors. In Proceedings of the 8th annual First Year Engineering Experience.

[15] Z. J. Wood and J. Workman. 2013. Computational art using Processing for CS0.
In Grace Hopper Celebration of Women in Computing.

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

25

http://dl.acm.org/citation.cfm?id=2037151.2037177
http://dl.acm.org/citation.cfm?id=2037151.2037177
https://doi.org/10.1145/2157136.2157214
http://dl.acm.org/citation.cfm?id=1127389.1127390
https://doi.org/10.1145/1869746.1869747
https://doi.org/10.1145/2493394.2493397

	Abstract
	1 Introduction
	2 CS0 Goals, Topics and Pedagogy
	2.1 Computational Art
	2.2 Games
	2.3 Mobile computing
	2.4 Music
	2.5 Robotics
	2.6 Security

	3 Related Work
	4 Examining student success
	5 Conclusions and future work
	References

