
���� ������
���

����������
�����������

Technical Report CPSLO-CSC-09-03

Preface
This volume contains the papers of the tenth annual Workshop on Scheme and Functional Programming,
held August 22nd at Northeastern University in close proximity to the Symposium in honor of Mitchell
Wand.

The Workshop recevied eighteen submissions this year, and accepted fifteen of these. In addition, we’re
pleased to include in the workshop an invited talk by Emmanuel Schanzer, on the Bootstrap program,
and a talk by the newly elected Scheme Language Steering committee on the future directions of Scheme.

Many people worked hard to make the Scheme Workshop happen. I would like to thank the Program
Committee, along with two external reviewers, Christopher Dutchyn and Daniel King, for their thought-
ful, detailed, and well-received reviews. The Scheme Workshop would also never have taken place without
the marvelous and timely work done by the Northeastern University development office staff headed by
Jenn Wong.

We used the Continue2 submission server to handle workshop submissions and found it effective and
robust. Our thanks go to Shriram Krishnamurthi and Arjun Guha for designing and maintaining it, along
with the many that have worked on it in the last seven years.

I found the advice of the Steering Committee invaluable in running the workshop, particularly the written
summaries provided by Olin Shivers and Mike Sperber. In addition, the phrasing of the web pages and
of this very note draws heavily on the words of Will Clinger and Robby Findler.

John Clements
Cal Poly State University
Organizer and Program Chair
on behalf of the program committee

Program Committee
Dominique Boucher (Nu Echo) Shriram Krishnamurthi (Brown University)
John Clements (Cal Poly) Matthew Might (University of Utah)
Abdulaziz Ghuloum (American University of Kuwait) David Van Horn (Northeastern University)
David Herman (Northeastern University)

Steering Committee
William D. Clinger (Northeastern University) Christian Queinnec (University Paris 6)
Marc Feeley (Université de Montréal) Manuel Serrano (INRIA Sophia Antipolis)
Robby Findler (University of Chicago) Olin Shivers (Georgia Tech)
Dan Friedman (Indiana University) Mitchell Wand (Northeastern University)

Scheme and Functional Programming, 2006 3

4 Scheme and Functional Programming, 2009

Schedule & Table of Contents
8:45am Invited Talk: If programming is like math, why don’t math teachers teach programming?

Emmanuel Schanzer

9:30am Break

9:55am Sequence Traces for Object-Oriented Executions . 7
Carl Eastlund, Matthias Felleisen

Scalable Garbage Collection with Guaranteed MMU . 14
William D Clinger, Felix S. Klock II

Randomized Testing in PLT Redex . 26
Casey Klein, Robert Bruce Findler

11:10am Break

11:30am A pattern-matcher for miniKanren -or- How to get into trouble with CPS macros 37
Andrew W. Keep, Michael D. Adams, Lindsey Kuper, William E. Byrd, Daniel P. Friedman

Higher-Order Aspects in Order . 46
Eric Tanter

Fixing Letrec (reloaded) . 57
Abdulaziz Ghuloum, R. Kent Dybvig

12:45pm Lunch

1:45pm The Scribble Reader: An Alternative to S-expressions for Textual Content . 66
Eli Barzilay

Interprocedural Dependence Analysis of Higher-Order Programs via Stack Reachability 75
Matthew Might, Tarun Prabhu

Descot: Distributed Code Repository Framework . 86
Aaron W. Hsu

Keyword and Optional Arguments in PLT Scheme . 66
Matthew Flatt, Eli Barzilay

Screen-Replay: A Session Recording and Analysis Tool for DrScheme . 103
Mehmet Fatih Köksal, Remzi Emre Başar, Suzan Üsküdarlı

3:00pm Break

3:20pm Get stuffed: Tightly packed abstract protocols in Scheme . 111
John Moore

Distributed Software Transactional Memory . 116
Anthony Cowley

World With Web: A compiler from world applications to JavaScript . 121
Remzi Emre Başar, Caner Derici, Çağdaş Şenol

4:05pm Break

4:25pm Peter J Landin (1930-2009) . 126
Olivier Danvy

Invited Talk: Future Directions for the Scheme Language
The Newly Elected Scheme Language Steering Committee

Scheme and Functional Programming, 2009 5

6 Scheme and Functional Programming, 2006

Sequence Traces for Object-Oriented Executions

Carl Eastlund Matthias Felleisen
Northeastern University

{cce,matthias}@ccs.neu.edu

Abstract
Researchers have developed a large variety of semantic models of
object-oriented computations. These include object calculi as well
as denotational, small-step operational, big-step operational, and
reduction semantics. Some focus on pure object-oriented compu-
tation in small calculi; many others mingle the object-oriented and
the procedural aspects of programming languages.

In this paper, we present a novel, two-level framework of object-
oriented computation. The upper level of the framework borrows
elements from UML’s sequence diagrams to express the message
exchanges among objects. The lower level is a parameter of the
upper level; it represents all those elements of a programming lan-
guage that are not object-oriented. We show that the framework is
a good foundation for both generic theoretical results and practical
tools, such as object-oriented tracing debuggers.

1. Models of Execution
Some 30 years ago, Hewitt [22, 23] introduced the ACTOR model
of computation, which is arguably the first model of object-oriented
computation. Since then, people have explored a range of mathe-
matical models of object-oriented program execution: denotational
semantics of objects and classes [7, 8, 25, 33], object calculi [1],
small step and big step operational semantics [10], reduction se-
mantics [16], formal variants of ACTOR [2], and others [4, 20].

While all of these semantic models have made significant con-
tributions to the community’s understanding of object-oriented lan-
guages, they share two flaws. First, consider theoretical results such
as type soundness. For ClassicJava, the type soundness proof uses
Wright and Felleisen’s standard technique of ensuring that type in-
formation is preserved while the computation makes progress. If
someone extends ClassicJava with constructs such as while loops
or switch statements, it is necessary to re-prove everything even
though the extension did not affect the object-oriented aspects of
the model. Second, none of these models are good starting points
for creating practical tools. Some models focus on pure core object-
oriented languages; others are models of real-world languages but
mingle the semantics of object-oriented constructs (e.g., method
invocations) with those of procedural or applicative nature (inter-
nal blocks or while loops). If a programmer wishes to debug the
object-oriented actions in a Java program, a tracer based on any of
these semantics would display too much procedural information.

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

Figure 1. Graphical sequence trace.

In short, a typical realistic model is to object-oriented debugging as
a bit-level representation is to symbolic data structure exploration.

In this paper, we introduce a two-level [32] semantic framework
for modeling object-oriented programming languages that over-
comes these shortcomings. The upper level represents all object-
oriented actions of a program execution. It tracks six kinds of ac-
tions via a rewriting system on object-configurations [26]: object
creation, class inspection, field inspection, field mutation, method
calls, and method return; we do not consider any other action an
object-oriented computation. The computations at this upper level
have a graphical equivalent that roughly corresponds to UML se-
quence diagrams [17]. Indeed, each configuration in the semantics
corresponds to a diagram, and each transition between two config-
urations is an extension of the diagram for the first configuration.

The upper level of the framework is parameterized over the in-
ternal semantics of method bodies, dubbed the lower level. To in-
stantiate the framework for a specific language, a semanticist must
map the object-oriented part of a language to the object-oriented
level of the framework and must express the remaining actions as
the lower level. The sets and functions defining the lower level may
be represented many ways, including state machines, mathemati-
cal functions, or whatever else a semanticist finds appropriate. We
demonstrate how to instantiate the framework with a Java subset.

In addition to developing a precise mathematical meaning for
the framework, we have also implemented a prototype of the frame-
work. The prototype traces a program’s object-oriented actions and
allows programmers to inspect the state of objects. It is a compo-
nent of the DrScheme programming environment [13] and covers
the kernel of PLT Scheme’s class system [15].

The next section presents a high-level overview. Section 3 intro-
duces the framework and establishes a generalized soundness the-
orem. Section 4 demonstrates how to instantiate the framework for
a subset of Java and extends the soundness theorem to that instan-
tiation. Section 5 presents our tool prototype. The last two sections
are about related and future work.

7

−→
t Any number of elements of the form t.
c[e] Expression e in evaluation context c.

e[x := v] Substitution of v for free variable x in expression e.
d

p−→ r The set of partial functions of domain d and range r.
d

f−→ r The set of finite mappings of domain d and range r.
[
−−−→
a 7→ b] The finite mapping of each a to the corresponding b.
f [
−−−→
a 7→ b] Extension of finite mapping f by each mapping of a

to b (overriding any existing mappings).

Figure 2. Notational conventions.

2. Sequence Traces
Sequence traces borrow visual elements from UML sequence di-
agrams, but they represent concrete execution traces rather than
specifications. A sequence trace depicts vertical object lifelines and
horizontal message arrows with class and method labels, just as in
sequence diagrams. The pool of objects extends horizontally; exe-
cution of message passing over time extends vertically downward.
There are six kinds of messages in sequence traces: new messages
construct objects, get and set messages access fields, call and re-
turn messages mark flow control into and out of methods, and in-
spect messages extract an object’s tag.

Figure 1 shows a sample sequence trace. This trace shows the
execution of the method normalize on an object representing the
cartesian point (1, 1). The method constructs and returns a new ob-
ject representing (

√
2

2
,
√

2
2

). The first object is labeled Obj1 and be-
longs to class point%. Its lifeline spans the entire trace and gains
control when an external agent calls Obj1.normalize(). The first
two actions access its x and y fields (self-directed messages, rep-
resented by lone arrowheads). Obj1 constructs the second point%
object, Obj2, and passes control to its constructor method. Obj2
initializes its x and y fields and returns control to Obj1. Finally,
Obj1 returns a reference to Obj2 and yields control.

Sequence traces suggest a model of computation as communi-
cation similar to π-calculus models [35]. In this model, an exe-
cution for an object-oriented program is represented as a collec-
tion of object lifelines and the messages passed between them. The
model “hides” computations that take place inside of methods and
that don’t require any externally visible communication. This is the
core of any object-oriented programming language and deserves a
formal exploration.

3. The Framework
Our framework assigns semantics to object-oriented languages at
two levels. The upper level describes objects, their creation, their
lifelines, and their exchanges of messages. The lower level con-
cerns all those aspects of a language’s semantics that are unrelated
to its object-oriented nature, e.g., static methods, blocks, decision
constructs, looping constructs, etc. In this section we provide syn-
tax, semantics, a type system, and a soundness theorem for the up-
per level.

3.1 The Upper Level
For the remainder of the paper we use the notational conventions
shown in Figure 2. Figure 3 gives the full syntax of the upper level
using this notation and specifies the language-specific sets over
which it is parameterized. A sequence trace is a series of states each
containing a pool of objects, a stack of active methods, a reference
to a controlling object, and a current action. Objects consist of a
static record (their unchanging properties, such as their class) and
a dynamic record (their mutable fields). Actions may be one of
six message types (new, inspect, get, set, call, or return) or an
execution error.

Syntax:
T =
−→
S Sequence trace

S = 〈P,K, r,A〉 Execution state
P : r

f−→ O Object pool
K = ε | 〈r, k〉K Method stack
O = 〈s,D〉 Object record
D : f

f−→ V Dynamic record
V = v | r | s Value
A = M | ERR Action
M = new O; k | inspect r; k Message
| get r.f ; k | set r.f := V ; k

| call r.m(
−→
V); k | return V

R = 〈P, ε, r, return V 〉 Result
| 〈P,K, r,ERR〉

ERR = err | error:ref | error:field Execution error

Where:
p lower-level parameter Program
k lower-level parameter Method-local continuation
s lower-level parameter Static record
f lower-level parameter Field name
m lower-level parameter Method name
v lower-level parameter Primitive value

err lower-level parameter Language-specific error
r countable set Object reference

Figure 3. Sequence trace syntax.

Figure 4 gives the upper-level operational semantics of se-
quence traces along with descriptions and signatures for its lower-
level parameters. The parameter init is a function mapping a pro-
gram to its initial state. A trace is the result of rewriting the initial
state, step by step, into a final state. Each subsequent state depends
on the previous state and action, as follows:

object creation A new action adds a reference and an object to the
pool. The initiating object retains control.

object inspection An inspect action retrieves the static record of
an object.

field lookup A get action retrieves the value of a field from an
object.

field update A set action changes the value of a field in an object.
method call A call action invokes a method in an object, supplies

a number of arguments, and transfers control.
method return A return action completes the current method call.

All of these transitions have a natural graphical equivalent (see
Section 2).

At each step, the rewriting system uses either the (partial) func-
tion invoke or resume to compute the next action. These func-
tions, like the step relation→ and several others described below,
are indexed by the source program p. Both functions are parame-
ters of the rewriting system. The former begins executing a method;
the latter continues one in progress using a method-local continu-
ation. Both functions are partial, admitting the possibility of non-
termination at the method-internal level. Also, both functions may
map their inputs to a language-specific error.

3.2 Soundness
Our two-level semantic framework comes with a two-level type
system. The purpose of this type system is to eliminate all upper-
level type errors (reference error, field error) and to allow only
those language-specific errors on which the lower-level insists. For

8 Scheme and Functional Programming, 2009

Evaluation:
〈P,K, r, new O; k〉 →p 〈P [r′ 7→ O],K, r, resumep(k, r′)〉 where r′ 6∈ dom(P)
〈P,K, r, inspect r′; k〉 →p 〈P,K, r, resumep(k, s)〉 where P (r′) = 〈s,D〉
〈P,K, r, get r′.f ; k〉 →p 〈P,K, r, resumep(k, V)〉 where P (r′) = 〈s,D〉 and D(f) = V
〈P,K, r, set r′.f := V ; k〉 →p 〈P [r′ 7→ 〈s,D[f 7→ V]〉],K, r, resumep(k, V)〉 where P (r′) = 〈s,D〉 and f ∈ dom(D)

〈P,K, r, call r′.m(
−→
V); k〉 →p 〈P, 〈r, k〉K, r′, invokep(r′, P (r′),m,

−→
V)〉 where r′ ∈ dom(P)

〈P, 〈r′, k〉K, r, return V 〉 →p 〈P,K, r′, resumep(k, V)〉
〈P,K, r, inspect r′; k〉
〈P,K, r, get r′.f ; k〉
〈P,K, r, set r′.f := V ; k〉
〈P,K, r, call r′.m(

−→
V); k〉

9
>>=
>>;
→p 〈P,K, r, error:ref〉 where r′ 6∈ dom(P)

〈P,K, r, get r′.f ; k〉
〈P,K, r, set r′.f := V ; k〉

ff
→p 〈P,K, r, error:field〉 where P (r′) = 〈s,D〉 and f 6∈ dom(D)

Where:
init : p −→ S Constructs the initial program state.

invokep : 〈r,O,m,−→V 〉 p−→ A Invokes a method.
resumep : 〈k, V 〉 p−→ A Resumes a suspended computation.

Figure 4. Sequence trace semantics.

Upper level:
p `u S : t State S has type t.
p `u P Object pool P is well-formed.
p, P `u K : t1

s−→ t2 Stack K produces type t2 if the current
method produces type t1.

p, P `u r : o Reference r has type o.
p, P `u s : t Static record s has type t as a value.
p, P `u O OK in o Object record O is an object of type o.
p, P `u D OK in o Dynamic record D stores fields for an

object of type o.
p, P `u A : t Action A’s method returns type t.

Lower level:
`` p : t Program p has type t.
p, P `` k : t1

c−→ t2 Continuation k produces an action of
type t2 when given input of type t1.

p, P `` s OK in o Static record s is well-formed in an ob-
ject of type o.

p, P `` v : t Primitive value v has type t.

Figure 5. Type judgments.

t any set Value types
o ⊆ t Object types

exn ⊆ err Allowable exceptions
vp partial order on t Subtype relation

fieldsp : o −→ (f
f−→ t)

)Produce an object’s
field, method, or static
record types.

methodsp : o −→ (m
f−→ 〈−→t , t〉)

metatypep : o −→ t

Figure 6. Sets, functions, and relations used by the type system.

example, in the case of Java, the lower level cannot rule out null
pointer errors and must therefore raise the relevant exceptions.

Type judgments in this system are split between those defined
at the upper level and those defined at the lower level, as shown
in Figure 5. The upper level relies on the lower-level judgments
and possibly vice versa. The lower-level type system must pro-
vide type judgments for programs, continuations, the static records
of objects, and primitive values. The upper-level type system de-

INIT
`` p : t

p `u init(p) : t

RESUME

p, P `u` V : t1
p, P `` k : t2

c−→ t3
t1 vp t2 t4 vp t3

p, P `u resumep(k, V) : t4

INVOKE

p, P `u r : o
−−−−−−−−−−→
p, P `u` V : t1

methodsp(o)(m) = 〈−→t2 , t3〉−−−−−→
t1 vp t2 t4 vp t3

p, P `u invoke(r, P (r),m,
−→
V) : t4

Figure 7. Constraints on the lower-level type system.

fines type judgments for everything else: program states, object
pools, stacks, references, static records when used as values, ob-
ject records, dynamic records, and actions of both the message and
error variety.

The lower level must also define several sets, functions, and
type judgments, shown in Figure 6. The set t defines types for the
language’s values; o defines the subset of t representing the types of
objects. The subset exn of err distinguishes the runtime exceptions
that well-typed programs may throw.

The subtype relation v induces a partial order on types. The
total functions fields and methods define the field and method
signatures of object types. The total function metatype determines
the type of a static record from the type of its container object; it is
needed to type inspect messages.

The INIT, RESUME, and INVOKE typing rules, shown in Fig-
ure 7, constrain the lower-level framework functions of the same
names. The INIT rule states that a program must have the same type
as its initial state. The RESUME rule states that a continuation’s
argument object and result action must match its input type and
output type, respectively. The INVOKE rule states that when an ob-
ject’s method is invoked and given appropriately-typed arguments,
it must produce an appropriately-typed action. In addition, a sound
system requires all three to be total functions, whereas the untyped
operational semantics allows resume and invoke to be partial. The

Scheme and Functional Programming, 2009 9

Syntax:
p =

−→
∆

s = c
f = 〈c, fcj〉
m = mcj | 〈c,mcj〉
v = null

err = error:method | error:null
| error:typecast | error:var

k = { τ x=k; −−−→τ x=e; e }
| (τ)k | (k v τ)r | k :c.fcj

| k :c.fcj=e | V :c.fcj=k

| k.mcj(−→e) | V .mcj(
−→
V k −→e)

| super≡r :c.mcj(
−→
V k −→e) | []

Where:
i countable set Interface name
c countable set Class name

mcj countable set Method label
fcj countable set Field label
∆ = interface i extends

−→
i { −→σ } Definition

| class c extends c implements
−→
i { −→φ −→δ }

σ = τ mcj(−→τ); Method signature
δ = τ mcj(−→τ x) { e } Method definition
φ = τ fcj=e; Field definition
e = V | x | this | { −−−→τ x=e; e } | new c Expression
| (τ)e | (c v τ)e | e :c.fcj | e :c.fcj=e
| e.mcj(−→e) | super≡e :c.mcj(−→e)

Figure 8. Java core syntax.

fieldp : 〈c, fcj〉 −→ φ Looks up field definitions.
methodp : 〈c,mcj〉 −→ δ Looks up method definitions.

objectp : c −→ O Constructs new objects.
callp : 〈r, c,mcj,

−→
V 〉 −→ A Picks a method’s first action.

evalp : e −→ A Chooses the next action.
→cj

p : e
p−→ e Computes a single step.

Figure 9. Java core relations and functions.

lower level type system must guarantee these rules, while the upper
level relies on them for a parametric soundness proof.

THEOREM 1 (Soundness). If the functions init , resume , and
invoke are total and satisfy constraints INIT, RESUME, and IN-
VOKE respectively, then if `` p : t, then either p diverges or
init(p) �p R and p `u R : t.

The type system satisfies a conventional type soundness theorem.
Its statement assumes that lower-level exceptions are typed; how-
ever, they can only appear in the final state of a trace. Due to space
limitations, the remaining details of the type system and soundness
proof have been relegated to our technical report [12].

4. Framework Instantiations
The framework is only useful if we can instantiate its lower level for
a useful object-oriented language. In this section we model a subset
of Java in our framework, establishes its soundness, and consider
an alternate interpretation of Java that strikes at the heart of the
question of which language features are truly object-oriented. We
also discuss a few other framework instantiations.

4.1 Java via Sequence Traces
Our framework can accomodate the sequential core of Java, based
on ClassicJava [16], including classes, subclasses, interfaces,
method overriding, and typecasts. Figure 8 shows the syntax of
the Java core. Our set of expressions includes lexically scoped
blocks, object creation, typecasts, field access, method calls, and
superclass method calls. Field access and superclass method calls
have class annotations on their receiver to aid the type soundness
lemma in Section 4.3. Typecast expressions have an intermediate
form used in our evaluation semantics. We leave out many other
Java constructs such as conditionals, loops, etc.

Programs in this language are a sequence of class and interface
definitions. An object’s static record is the name of its class. Field
names include a field label and a class name. Method names in-
clude a label and optionally a class name. The sole primitive value
is null. We define errors for method invocation, null dereference,

failed typecasts, and free variables. Last but not least, local contin-
uations are evaluation contexts over expressions.

Figure 10 defines the semantics of our Java core using the rela-
tions and functions described in Figure 9. We omit the definitions
of v, field , and method , which simply inspect the sequence of
class and interface definitions. The init function constructs an ob-
ject of class Program and invokes its main method. The resume
function constructs a new expression from the given value and the
local continuation (a context), then passes it to eval ; invoke simply
uses call .

Method invocation uses call for dispatch. This function looks
up the appropriate method in the program’s class definitions. It
substitutes the method’s receiver and parameters, then calls eval
to evaluate the expression.

The eval function is defined via a reduction relation→cj. That
is, its results are determined by the canonical forms of expression
with respect to �cj, the reflexive transitive closure. Object cre-
ation, field lookup, field mutation, method calls, and method returns
all generate corresponding framework actions. Unelaborated type-
cast expressions produce inspection actions, adding an elaborated
typecast context to their continuation. The eval function signals an
error for all null dereferences and typecast failures.

Calls to an object’s superclass generate method call actions; that
is, an externally visible message. The method name includes the
superclass name for method dispatch, which distinguishes it from
the current definition of the method.

The step relation (→cj) performs all purely object-internal com-
putations. It reduces block expressions by substitution and com-
pletes successful typecasts by replacing the elaborated expression
with its argument.

LEMMA 1. For any expression e, there is some e′ such that e �cj
p

e′ and e′ is of canonical form.

Together, the sets of canonical expressions and of expressions on
which →cj is defined are exhaustive. Furthermore, each step of
→cj strictly reduces the size of the expression. The expression must
reduce in a finite number of steps to a canonical form for which
eval produces an action. Therefore eval is total.

COROLLARY 1. The functions invoke and resume are total.

Because these functions are total, evaluation in the sequential core
of Java cannot get stuck; each state must either have a successor or
be a final result.

4.2 Alternate Interpretation of the Java Core
Our parameterization of the sequence trace framework for Java
answers the question: “what parts of the Java core are object-

10 Scheme and Functional Programming, 2009

init(p) = 〈[r0 7→ objectp(Program)], ε, r0, call r0.main(); []〉
resumep(k, V) = evalp(k[V])

invokep(r, 〈c,D〉,mcj,
−→
V) = callp(r, c,mcj,

−→
V)

invokep(r, 〈c,D〉, 〈c′,mcj〉,−→V) = callp(r, c′,mcj,
−→
V)

object(c) = 〈c, [
−−−−−−−−−−−→
〈c′, fcj〉 7→ null]〉

where
−−−−−−−−−−−−−−−−−→
fieldp(c, fcj) = τ fcj

=c′;

callp(r, c,mcj,
−→
V) =8

<
:

evalp(e[this := r]
−−−−−→
[x := V])

if methodp(c,mcj) = τ mcj(−→τ x) { e }
error:method otherwise

evalp(e) =

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

return V if e �cj
p V

new object(c); k if e �cj
p k[new c]

get r.〈c, f〉; k if e �cj
p k[r :c.f]

set r.〈c, f〉 := V ; k if e �cj
p k[r :c.f=V]

call r.m(
−→
V); k if e �cj

p k[r.m(
−→
V)]

call r.〈c,m〉(−→V); k if e �cj
p k[super≡r :c.mcj(

−→
V)]

inspect r; k[([] v τ)r] if e �cj
p k[(τ)r]

error:typecast if e �cj
p k[(τ)null] or e �cj

p k[(c v τ)V] and c 6vp τ

error:null if e �cj
p k[null :c.f] or e �cj

p k[null :c.f=V] or e �cj
p k[null.m(

−→
V)]

error:var if e �cj
p k[x] or e �cj

p k[this]

k[{ τ ′ x′=V ′; −−−→τ x=e; e′ }] →cj
p k[{ −−−−−−−−−−−→τ x=e[x′ := V ′]; e′[x′ := V ′] }]

k[{ e }] →cj
p k[e]

k[(c v τ)V] →cj
p k[V] if c vp τ

Figure 10. Java core semantics and auxiliary definitions.

oriented?” In the semantics above, the answer is clear: object cre-
ation, field lookup and mutation, method calls, method returns, su-
perclass method calls, and typecasts.

Let us reconsider this interpretation. The most debatable aspect
of our model concerns superclass method calls. They take place en-
tirely inside one object and cannot be invoked by outside objects,
yet we have formalized them as messages. An alternate perspective
might formulate superclass method calls as object-internal compu-
tation for comparison.

Our framework is flexible enough to allow this reinterpretation
of Java. In our semantics above, as in other models of Java [3,
10, 16, 24], super expressions evaluate to method calls. Method
calls use invoke which uses call . We can change eval to use call
directly in the super rule, i.e. no object-oriented action is created.
The extra clauses for method names and call that were used for
superclass calls can be removed. These modifications are shown in
Figure 11.1

Now that we have two different semantics for Java, it is possible
to compare them and to study the tradeoffs; implementors and
semanticists can use either interpretation as appropriate.

4.3 Soundness of the Java Core
We have interpreted the type system for the Java core in our frame-
work and established its soundness. Again, the details of the type
system and soundness proof can be found in our technical report.

LEMMA 2. The functions init , resume , and invoke are total and
satisfy constraints INIT, RESUME, and INVOKE.

According to Corollary 1, these functions are total. Since INIT,
RESUME, and INVOKE hold, type soundness is just a corollary of
Theorem 1.

COROLLARY 2 (Java Core Soundness). In the Java core, if `` p :
t, then either p diverges or init(p) �p R and p `u R : t.

1 Note that invoke and resume are no longer total for cyclic class graphs.
A soundness proof for this formulation must account for this exception, or
call must be further refined to reject looping super calls.

m = mcj | 〈c,mcj〉

invokep(r, 〈c,D〉,mcj,
−→
V) = callp(r, c,mcj,

−→
V)

invokep(r, 〈c,D〉, 〈c′,mcj〉,−→V) = callp(r, c′,mcj,
−→
V)

evalp(e) =8
<
:

. . .

call r.〈c,m〉(−→V); k if e �cj
p k[super≡r :c.mcj(

−→
V)]

callp(r, c,mcj,
−→
V) if e �cj

p k[super≡r :c.mcj(
−→
V)]

Figure 11. Changes for an alternate interpretation of Java.

4.4 Other Languages
The expressiveness of formal sequence traces is not limited to just
one model. In addition to ClassicJava, we have modeled Abadi
and Cardelli’s object calculus [1], the λ-calculus, and the λ&-
calculus [5] in our framework. The λ-calculus is the canonical
model of functional computation, and the λ&-calculus is a model of
dispatch on multiple arguments. These instantiations demonstrate
that sequence traces can model diverse (even non-object-oriented)
languages and complex runtime behavior. Our technical report con-
tains the full embeddings.

5. Practical Experience
To demonstrate the practicality of our semantics, we have im-
plemented a Sequence Trace tool for the PLT Scheme class sys-
tem [15]. As a program runs, the tool displays messages passed be-
tween objects. Users can inspect data associated with objects and
messages at each step of execution. Method-internal function calls
or other applicative computations remain hidden.

PLT Scheme classes are implemented via macros [9, 14] in a
library, but are indistinguishable from a built-in construct. Traced
programs link to an instrumented version of the library. The in-
strumentation records object creation and inspection, method entry
and exit, and field access, exactly like the framework. Both instru-

Scheme and Functional Programming, 2009 11

(define point%
(class object%

...
(define (translate dx dy) ...)))

(define polygon%
(class object%

...
(define (add-vertex v) ...)
(define (translate dx dy) ...)))

(send* (new polygon%)
(add-vertex ...)
(add-vertex ...)
(add-vertex ...)
(translate 5 5))

Figure 12. Excerpt of an object-oriented PLT Scheme program.

mented and non-instrumented versions of the library use the same
implementation of objects, so traced objects may interact with un-
traced objects; however, untraced objects do not pay for the instru-
mentation overhead.

Figure 13 shows a sample sequence trace generated by our
tool. This trace represents a program fragment, shown in Fig-
ure 12, using a class-based geometry library. The primary object
is a polygon% containing three point% objects. The trace begins
with a call to the polygon’s translate method. The polygon must
in turn translate each point, so it iterates over its vertices invoking
their translate methods. Each original point constructs, initial-
izes, and returns a new translated point.

The graphical layout allows easy inspection and navigation of a
program. The left edge of the display allows access to the sender
and receiver objects of each message. Each object lifeline provides
access to field values and their history. Each message exposes the
data and objects passed as its parameters. Highlighted sections of
lifelines and message arrows emphasize flow control. Structured
algorithms form recognizable patterns, such as the three iterations
of the method translate on class point% shown in Figure 13,
aiding in navigating the diagram, tracking down logic errors, and
comparing executions to specifications.

6. Related Work
Our work has two inspirational sources. Calculi for communicating
processes often model just those actions that relate to process
creation, communication, etc. This corresponds to our isolation of
object-oriented actions in the upper level of the framework. Of
course, our framework also specifies a precise interface between
the two levels and, with the specification of a lower level, has
the potential to model entire languages. Starting from this insight,
Graunke et al. [18, 19, 27] have recently created a trace calculus for
a sequential client-server setting. This calculus models a web client
(browser) and web server with the goal of understanding systemic
flaws in interactive web programs. Roughly speaking, our paper
generalizes Graunke et al.’s research to an arbitrarily large and
growing pool of objects with a general set of actions and a well-
defined interface to the object-internal computational language.

Other tools for inspecting and debugging program traces exist,
tackling the problem from many different perspectives. Lewis [28]
presents a so-called omniscient debugger, which records every
change in program state and reconstructs the execution after the
fact. Intermediate steps in the program’s execution can thus be de-
bugged even after program completion. This approach is similar to
our own, but with emphasis on the pragmatics of debugging rather

Figure 13. Sample output of the PLT Scheme Sequence Trace tool.

than presenting an intuitive model of computation. Lewis does not
present a theoretical framework and does not abstract his work
from Java.

Execution traces are used in many tools for program analy-
sis. Walker et al.’s tool [36] allows users to group program ele-
ments into abstract categories, then coalesces program traces ac-
cordingly and presents the resulting abstract trace. Richner and
Ducasse [34] demonstrate automated recovery of class collabo-
rations from traces. Ducasse et al. [11] provide a regression test
framework in which successful logical queries over existing exe-
cution traces become specifications for future versions. Our tool is
similar to these in that it uses execution traces; however, we do not
generate abstract specifications. Instead we allow detailed inspec-
tion of the original trace itself.

Even though our work does not attempt to assign semantics
to UML’s sequence diagrams, many pieces of research in this di-
rection exist and share some similarities with our own work. We
therefore describe the most relevant work here. Many semantics
for UML provide a definition for sequence diagrams as program
specifications. Xia and Kane [37] and Li et al. [29] both develop
paired static and dynamic semantics for sequence diagrams. The
static semantics validate classes, objects, and operations referenced
by methods; the dynamic semantics validate the execution of in-
dividual operations. Nantajeewarawat and Sombatsrisomboon [31]
define a model-theoretic framework that can infer class diagrams
from sequence diagrams. Cho et al. [6] provide a semantics in a
new temporal logic called HDTL. These semantics are all con-
cerned with specifications; unlike our work, they do not address
object-oriented computation itself.

12 Scheme and Functional Programming, 2009

Lund and Stølen [30] and Hausmann et al. [21] both provide
an operational semantics for UML itself, making specifications
executable. Their work is dual to ours: we give a graphical, UML-
inspired semantics to traditional object-oriented languages, while
they give traditional operational semantics to UML diagrams.

7. Conclusions and Future Work
This paper presents a two-level semantics framework for object-
oriented programming. The framework carefully distinguishes ac-
tions on objects from internal computations of objects. The two
levels are separated via a collection of sets and partial functions. At
this point the framework can easily handle models such as the core
features of Java, as demonstrated in section 4, and languages such
as PLT Scheme, as demonstrated in section 5.

Sequence traces still present several opportunities for elabo-
ration at the object-oriented level. Most importantly, the object-
oriented level currently assumes a functional creation mechanism
for objects. While we can simulate the complex object construction
of Java or PLT Scheme with method calls, we cannot model them
directly. Conversely, the framework does not support a destroy ac-
tion. This feature would require the extension of sequence traces
with an explicit memory model, possibly parameterized over lower
level details.

References
[1] Abadi, M. and L. Cardelli. A Theory of Objects. Springer, 1996.
[2] Agha, G., I. A. Mason, S. F. Smith and C. L. Talcott. A foundation

for actor computation. J. Functional Programming, 7(1):1–72, 1997.
[3] Bierman, G. M., M. J. Parkinson and A. M. Pitts. MJ: an imperative

core calculus for Java and Java with effects. Technical report,
Cambridge University, 2003.

[4] Bruce, K. B. Foundations of Object-Oriented Languages: Types and
Semantics. MIT Press, 2002.

[5] Castagna, G., G. Ghelli and G. Longo. A calculus for overloaded
functions with subtyping. Information and Computation, 117(1):115–
135, 1995.

[6] Cho, S. M., H. H. Kim, S. D. Cha and D. H. Bae. A semantics of
sequence diagrams. Information Processing Letters, 84(3):125–130,
2002.

[7] Cook, W. R. A Denotational Semantics of Inheritance. PhD thesis,
Brown University, 1989.

[8] Cook, W. R. and J. Palsberg. A denotational semantics of inheritance
and its correctness. In Proc. 1989 Conference on Object-Oriented
Programming: Systems, Languages, and Applications, p. 433–443.
ACM Press, 1989.

[9] Culpepper, R., S. Tobin-Hochstadt and M. Flatt. Advanced macrology
and the implementation of Typed Scheme. In Proc. 8th Workshop on
Scheme and Functional Programming, p. 1–14. ACM Press, 2007.

[10] Drossopoulou, S. and S. Eisenbach. Java is type safe—probably. In
Proc. 11th European Conference on Object-Oriented Programming,
p. 389–418. Springer, 1997.

[11] Ducasse, S., T. Gı̂rba and R. Wuyts. Object-oriented legacy system
trace-based logic testing. In Proc. 10th European Conference on
Software Maintenance and Reengineering, p. 37–46, 2006.

[12] Eastlund, C. and M. Felleisen. Sequence traces for object-oriented
executions. Technical report, Northeastern University, 2006.

[13] Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler and M. Felleisen. DrScheme: a programming environment
for Scheme. J. Functional Programming, 12(2):159–182, 2002.

[14] Flatt, M. Composable and compilable macros: you want it when?
In Proc. 7th ACM SIGPLAN International Conference on Functional
Programming, p. 72–83. ACM Press, 2002.

[15] Flatt, M., R. B. Findler and M. Felleisen. Scheme with classes,
mixins, and traits. In Proc. 4th Asian Symposium on Programming
Languages and Systems, p. 270–289. Springer, 2006.

[16] Flatt, M., S. Krishnamurthi and M. Felleisen. Classes and mixins. In
Proc. 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, p. 171–183. ACM Press, 1998.

[17] Fowler, M. and K. Scott. UML Distilled: Applying the Standard
Object Modeling Language. Addison-Wesley, 1997.

[18] Graunke, P., R. Findler, S. Krishnamurthi and M. Felleisen. Modeling
web interactions. In Proc. 15th European Symposium on Program-
ming, p. 238–252. Springer, 2003.

[19] Graunke, P. T. Web Interactions. PhD thesis, Northeastern University,
2003.

[20] Gunter, C. A. and J. C. Mitchell, editors. Theoretical Aspects of
Object-Oriented Programming: Types, Semantics, and Language
Design. MIT Press, 1994.

[21] Hausmann, J. H., R. Heckel and S. Sauer. Towards dynamic meta
modeling of UML extensions: an extensible semantics for UML
sequence diagrams. In Proc. IEEE 2001 Symposia on Human Centric
Computing Languages and Environments, p. 80–87. IEEE Press,
2001.

[22] Hewitt, C. Viewing control structures as patterns of passing messages.
Artificial Intelligence, 8(3):323–364, 1977.

[23] Hewitt, C., P. Bishop and R. Steiger. A universal modular ACTOR
formalism for artificial intelligence. In Proc. 3rd International Joint
Conference on Artificial Intelligence, p. 235–245. Morgan Kaufmann,
1973.

[24] Igarashi, A., B. Pierce and P. Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. In Proc. 1999 Conference on Object-
Oriented Programming: Systems, Languages, and Applications, p.
132–146. ACM Press, 1999.

[25] Kamin, S. N. Inheritance in SMALLTALK-80: a denotational
definition. In Proc. 15th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, p. 80–87. ACM Press,
1988.

[26] Klop, J. W. Term rewriting systems: a tutorial. Bulletin of the EATCS,
32:143–182, 1987.

[27] Krishnamurthi, S., R. B. Findler, P. Graunke and M. Felleisen.
Modeling web interactions and errors. In Interactive Computation:
the New Paradigm, p. 255–275. Springer, 2006.

[28] Lewis, B. Debugging backwards in time. In Proc. 5th In-
ternational Workshop on Automated Debugging, 2003. http:
//www.lambdacs.com/debugger/AADEBUG_Mar_03.pdf.

[29] Li, X., Z. Liu and J. He. A formal semantics of UML sequence
diagrams. In Proc. 15th Australian Software Engineering Conference,
p. 168–177. IEEE Press, 2004.

[30] Lund, M. S. and K. Stølen. Extendable and modifiable operational
semantics for UML 2.0 sequence diagrams. In Proc. 17th Nordic
Workshop on Programming Theory, p. 86–88. DIKU, 2005.

[31] Nantajeewarawat, E. and R. Sombatsrisomboon. On the semantics
of Unified Modeling Language diagrams using Z notation. Int. J.
Intelligent Systems, 19(1–2):79–88, 2004.

[32] Nielson, F. and H. R. Nielson. Two-level functional languages.
Cambridge University Press, 1992.

[33] Reddy, U. S. Objects as closures: abstract semantics of object-
oriented languages. In Proc. 1988 ACM Conference on LISP and
Functional Programming, p. 289–297. ACM Press, 1988.

[34] Richner, T. and S. Ducasse. Using dynamic information for the
iterative recovery of collaborations and roles. In Proc. International
Conference on Software Maintenance, p. 34–43. IEEE Press, 2002.

[35] Sangiorgi, D. and D. Walker. The Pi-Calculus: A Theory of Mobile
Processes. Cambridge University Press, 2003.

[36] Walker, R. J., G. C. Murphy, J. Steinbok and M. P. Robillard. Efficient
mapping of software system traces to architectural views. In Proc.
2000 Conference of the Centre for Advanced Studies on Collaborative
Research, p. 12. IBM Press, 2000.

[37] Xia, F. and G. S. Kane. Defining the semantics of UML class and
sequence diagrams for ensuring the consistency and executability of
OO software specification. In Proc. 1st International Workshop
on Automated Technology for Verification and Analysis, 2003.
http://cc.ee.ntu.edu.tw/~atva03/papers/16.pdf.

Scheme and Functional Programming, 2009 13

Scalable Garbage Collection with Guaranteed MMU

William D. Clinger
Northeastern University

will@ccs.neu.edu

Felix S. Klock II
Northeastern University
pnkfelix@ccs.neu.edu

Abstract
Regional garbage collectionoffers a useful compromise between
real-time and generational collection. Regional collectors resemble
generational collectors, but are scalable: our main theorem guar-
antees a positive lower bound, independent of mutator and live
storage, for the theoretical worst-case minimum mutator utilization
(MMU). The theorem also establishes upper bounds for worst-case
space usage and collection pauses.

Standard generational collectors are not scalable. Some real-
time collectors are scalable, while others assume a well-behaved
mutator or provide no worst-case guarantees at all.

Regional collectors cannot compete with hard real-time collec-
tors at millisecond resolutions, but offer efficiency comparable to
contemporary generational collectors combined with improved la-
tency and MMU at resolutions on the order of hundreds of millisec-
onds to a few seconds.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection)

General Terms Algorithms, Design, Performance

Keywords scalable, real-time, regional garbage collection

1. Introduction
We have designed and prototyped a new kind of scalable garbage
collector that delivers a provable fixed upper bound for the dura-
tion of collection pauses. This theoretical worst-case bound is com-
pletely independent of the mutator (defined as the non-gc portion
of an application) and the size of its data.

The collector also delivers a provable fixed lower bound for
worst-case minimum mutator utilization (MMU, expressed asthe
smallest percentage of the machine cycles that are available to
the mutator during any sufficiently long interval of time) and a
simultaneous worst-case upper bound for space, expressed as a
fixed multiple of the mutator’s peak storage requirement.

These guarantees are achieved by sacrificing throughput on un-
usually gc-intensive programs. For most programs, however, the
loss of throughput is small. Indeed, our prototype’s overall through-
put remains competitive with several generational collectors that
are currently deployed in popular systems.

Section 5 discusses one near-worst-case benchmark. To reduce
this paper to an acceptable length, we defer most discussionof

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

more typical programs, and of throughput generally, to another
paper that will also describe the engineering of our prototype in
greater detail.

Worst-case performance, both theoretical and observed, isthe
focus of this paper. Many garbage collectors have been designed
to exploit common cases, with little or no concern for the worst
case. As illustrated by section 5, their worst-case performance
can be quite poor. When designing our newregional collector,
our main goal was to guarantee a minimal level of performance,
independent of problem size and mutator behavior. We exploit
common cases only when we can do so without compromising
latency or asymptotic performance for the worst case.

1.1 Bounded Latency

Generational collectors that rarely stop the mutator whilethey col-
lect the entire heap have worked well enough for many applica-
tions, but that paradigm breaks down for truly large heaps: even
an occasional full collection can produce alarming or annoying de-
lays (Nettles and O’Toole 1993). This problem is evident on 32-bit
machines, and will only get worse as 64-bit machines become the
norm.

Real-time, incremental, or concurrent collectors can eliminate
those delays, but at significant cost. On stock hardware, most
bounded-latency collectors depend upon a read barrier, which re-
duces throughput (average mutator utilization) even for programs
that create little garbage. Read barriers and other invariants also
increase the complexity of compilers and run-time infrastructure,
while impeding use of libraries that were written and compiled
without knowledge of the garbage collector’s invariants.

Our regional collector is a novel bounded-latency collector
whose invariants resemble the invariants of standard generational
garbage collectors. In particular, our regional collectordoes not
require a read barrier.

1.2 Scalability

Unlike standard generational collectors, the regional collector is
scalable: Theorem 1 below establishes that the regional collector’s
theoretical worst-case collection latency and MMU are bounded by
nontrivial constants that are independent of the volume of reachable
storage and are also independent of mutator behavior. The theorem
also states that these fixed bounds are achieved in space bounded
by a fixed multiple of the volume of reachable storage.

Although most real-time, incremental, or concurrent collectors
appear to be designed for embedded systems in which they can be
tuned for a particular mutator, some (though not all) hard real-time
collectors are scalable in the same sense as the regional collector.
Even so, we are not aware of any published proofs that establish all
three scalability properties of our main theorem for a hard real-time
collector.

The following theorem characterizes the regional collector’s
worst-case performance.

14

Theorem 1. There exist positive constantsc0, c1, c2, andc3 such
that, for every mutator, no matter what the mutator does:

1. GC pauses are independent of heap size:c0 is larger than the
worst-case time between mutator actions.

2. Minimum mutator utilization is bounded below by constants
that are independent of heap size: within every interval of time
longer than3c0, the MMU is greater thanc1.

3. Memory usage isO(P), whereP is the peak volume of reach-
able objects: the total memory used by the mutator and collec-
tor is less thanc2P + c3.

We must emphasize that the constantsc0, c1, c2, andc3 are com-
pletely independent of the mutator. Their values do depend upon
several parameters of the regional collector, upon detailsof how the
collector is implemented in software, and upon the hardwareused
to execute the mutator and collector. Later sections will discuss the
worst-case constants and report on the performance actually ob-
served for one near-worst-case benchmark.

Major contributions of this paper include:

• a new algorithm for scalable garbage collection

• a proof of its scalability, independent of mutator behavior

• a novel solution to the problem of popular objects

• formulas that describe how theoretical worst-case performance
varies as a function of collector parameters

• empirical measurements of actual performance for one near-
worst-case benchmark

The remainder of this paper describes the processes, data struc-
tures, and algorithms of the regional collector, provides aproof of
our main theorem above, estimates worst-case bounds, and summa-
rizes related and future work.

2. Regional Collection
The regional collector resembles a stop-the-world generational col-
lector with several additional data structures, processes, and invari-
ants.

In place of generations that segregate objects by age, the re-
gional collector maintains a set of relatively small regions, all of
the same sizeR. There is no strict correlation between an object’s
region and the object’s age. Only one region is collected at atime.
(In most generational collectors, collecting a generationimplies the
simultaneous collection of all younger generations.)

The regional collector assumes every object is small enoughto
fit within a region. For justification, see sections 3.4 and section 7.

The regional collector maintains a remembered set, a collection
of summary sets, and a snapshot structure. Each component isde-
scribed in detail below, after an overview of the memory manage-
ment processes. In short, the remembered set tracks region-crossing
references, the summary sets summarize portions of the remem-
bered set that will be relevant to upcoming collections, andthe
snapshot structure gathers past reachability informationto refine
the remembered set.

The interplay between regions, the remembered set and the
summary sets is an important and novel aspect of our design.

2.1 Processes

The regional collector adds three distinct computational processes
to those of the mutator:

• a collection process uses the Cheney (1970) algorithm to move
a region’s reachable storage into some other region(s),

• a summarization process computes summary sets from the re-
membered set, and

• a snapshot-at-the-beginning marking process marks every ob-
ject reachable in a snapshot of the object graph.

The summarization and marking processes run concurrently
or interleaved with the mutator processes. When the collection
process is executing, all other processes are suspended.

The collection and marking processes serve distinct purposes.
The collection process moves objects to prevent fragmentation, and
updates pointers from outside the collected region to pointto the
newly relocated objects; it also reclaims unreachable storage.1

The pointers that must be updated during a relocating collection
reside in uncollected regions, in the marking process’s snapshot
structure, and in the mutator stack(s); the latter are discussed in
sections 2.6 and 2.8 respectively.

The summarization process constructssummary setsin prepa-
ration for collections, and is the subject of section 2.3.

The regional collector imposes a fixed constant bound on the
duration of each collection. That means that apopular region,
whose summary set is larger than a fixed threshold, would taketoo
long to collect. Section 3.3 proves that, with appropriate values for
the collector’s parameters, the percentage of popular regions is so
well bounded that the regional collector can afford to leavepopular
regions uncollected. That is one of the critical lemmas thatestablish
the scalability of regional garbage collection.

The main purpose of the marking process is to limit unreachable
storage to a bounded fraction of peak live storage; it accomplishes
that by removing unreachable references from the remembered
set. The marking process also calculates the volume of reachable
storage at the time of its initiation; without that information, the
collector might not be able to guarantee worst-case bounds for its
storage requirements.

2.2 Remembered Set

We bound the pause time by collecting one region independently of
all others. To enable this, the mutator and collector collaboratively
maintain aremembered set, which contains every location (or ob-
ject) that points from one region to a different region. A similar
structure is a standard component of generational collectors.

The mutator can create such region-crossing pointers by alloca-
tion or assignment. The collector can create region-crossing point-
ers by relocating an object from one region to another.

The remembered set is affected by two distinct kinds of impre-
cision:

• The remembered set may contain entries for locations or objects
that are no longer reachable by the mutator.

• The remembered set may contain entries for locations or objects
that are still reachable, but no longer contain a pointer that
points from one region to a different region.

The regional collector represents its remembered set usinga
data structure that records at most one entry for each location in the
heap (e.g. a hash table or fine-grain card table suffices). Thesize
of the remembered set’s representation is therefore bounded by the
size of the heap, even though the remembered set is imprecise.

2.3 Summary Sets

A typical generational collector will scan most (or all) of the re-
membered set during collections of the younger portions of the
heap. In the worst case the remembered set can grow proportional
to the heap; hence this technique would not satisfy our pausetime
bounds, and is not an option for the regional collector.

1 The collection process is theonly process permitted to move objects. The
summarization and marking processes do not change the correspondence
between addresses and objects; hence neither interferes with the other’s
view of the heap (nor the mutator’s view), even if run concurrently.

Scheme and Functional Programming, 2009 15

To collect a region independently of other regions, the collector
must know all locations in uncollected regions that may holdpoint-
ers into the collected region. This set of locations is thesummary
setfor the collected region.

If an imprecise remembered set were organized as a set of
summary sets, one for each region, then the collector would not be
scalable: in the worst case, the storage occupied by those summary
sets would be proportional to the number of regions times the
size of the heap. Since regions are of fixed constant size, the
summary sets could occupy storage proportional to the square of
the heap size. That is why the regional collector uses a remembered
set representation that records pointers that come out of a region
instead of pointers that go into the region.

There are two distinct issues to address regarding the use and
construction of summary sets.

First, the regional collectormustcompute a region’s summary
set before it can collect the region. But a naı̈ve construction could
take both time and space proportional to the size of the heap,which
would violate our bounds.

Second, in the worst case, a summary set for a region may
consist of all locations in the heap. That means that apopular
region, defined as a region whose summary set is larger than a fixed
threshold, would take too long to collect.

To address these two issues, and thus keep time and space under
control, the summarization process

• amortizes the cost in time by incrementally computing multiple
summary sets for a fixed fraction1/F1 of the heap’s regions,
but

• abandons the computation of any summary set whose size ex-
ceeds a fixed wave-off threshold (expressed as a multipleS of
the region sizeR).

Waving off summarization raises the question: when do popular
regions get collected? Our answer, inspired by Detlefs et al. (2004),
is simple: such regions are not collected.2 Instead we bound the
percentage of popular regions to ensure that the regional collector
can afford to leave popular regions uncollected. See sections 3.2
and 3.3.

2.4 Nursery

Like most generational collectors, the regional collectorallocates
all objects within a relatively smallnursery. The nursery has little
impact on worst-case performance, so our proofs ignore it. For
most programs, however, the nursery greatly improves the observed
MMU and overall efficiency of the regional collector.

Since the nursery is collected as part of every collection, loca-
tions within the nursery that point outside the nursery do not need
to be added to the remembered set.

Pointers from a region into the nursery can be created only by
assignments. Those pointers are recorded in a special summary set,
which is updated by processing of write barrier logs. If the size of
that summary set exceeds a fixed threshold, then the regionalcol-
lector forces a minor collection that empties the nursery, promoting
survivors into a region.

2.5 Grouping Regions

Figure 1 depicts how regions are partitioned into five groups:
{ ready, unfilled, filled, popular, summarizing }. In the figure,
each small rectangle is a fixed-size region, the tiny ovals are objects
allocated within a region, and the triangular “hats” atop some of the

2 Our strategy is subtly different from Detlefs et al. (2004);Garbage-First
migrates popularobjectsto a dedicated space; that still requires time pro-
portional to the heap size in the worst case. We do not migratethe popular
objects at all.

r eady

popular

unf i l led

f i l led

summar iz ing

Figure 1. Grouping and transition of regions

regions are summary sets. The dotted hats are under construction,
while the filled hats are completely constructed.

The thinnest arcs in the figure, connecting small ovals, represent
migration of individual objects during a major collection;that is the
only time at which objects move from one region to another. Arcs
of medium thickness represent transitions of a single region from
one group to another, and the thickest arcs represent transitions of
many regions at once.

At all times, one of the unfilled regions is the currentto-space;
it may contain some objects, but all other regions in the unfilled
group are empty.

Four of the arcs form a cycle that describes the usual transitions
of a region:

(ready, unfilled) On each major collection, one region (thefrom-
space) is selected from theready group. All of its reachable
objects are forwarded to unfilled region(s) via Cheney’s algo-
rithm (the thinnest arcs). After object forwarding is complete,
the now empty region is reclassified asunfilled.

(unfilled, filled) When the collector fills the current to-space re-
gion to capacity, it is reclassified asfilled, and another unfilled
region is picked to be the new to-space.

(filled, summarizing) The summarization process starts its cycle
by reclassifying a subset of regionsen masseassummarizing,
preparing them for future collection.

(summarizing, ready) At the end of a summarization cycle the
summarized regions becomeready for collection.

The remaining three arcs in the diagram describe transitions for
popular regions:

(summarizing, popular) As the summarization process passes
over the remembered set, it may discover that a summary set
for a particular region is too large: i.e., the region has toomany
incoming references to be updated within the pause time bound.
The sumarization process will then remove that region from the
summarizing group, and deem that regionpopular.

(ready, popular) Mutator activity can increase the number of in-
coming references to aready region, to the point where it has
too many incoming references to be updated within the pause
time bound. Such regions are likewise removed from theready
group and becomepopular.

(popular, summarizing) Our collector doesnot assume that pop-
ular regions will remain popular forever. At the start of a sum-
marization cycle,popular regions can be shifted into thesum-
marizing group, where their fitness for collection will be re-
evaluated by the summarization process.

16 Scheme and Functional Programming, 2009

2.6 Snapshots

The remembered set is imprecise. To bound its imprecision, a
periodic snapshot-at-the-beginning (Yuasa 1990) markingprocess
incrementally constructs a snapshot of the heap at a particular point
in time. The resulting snapshot classifies every object as either
unreachable or live/unallocated at the time of the snapshot.

The marking process incrementally traces the snapshot’s object
graph; objects allocated after the instant the snapshot wasinitiated
are considered live by the snapshot and are not traced by the
marking process. Objects relocated by the Cheney algorithmretain
their current unreachable/live classification in the snapshot.

When the marking process completes snapshot construction,it
removes dead locations from the remembered set. This increases
remembered set precision, reducing the amount of floating garbage;
in particular, it ensures that cyclic garbage across different regions
is eventually removed from the remembered set.

The developing snapshot has a frontier of objects remainingto
be processed, called themark stack. The regional collector treats
the portion of the mark stack holding objects in the collected region
as an additional source of roots. In order to ensure that collection
pauses only take time proportional to the size of a region, each
regions’ substacks are threaded through the single mark stack,
and the collector scansonly the portion of the stack relevant to a
particular region.

2.7 Write Barrier

Assignments and other mutations that store into pointer fields of
objects must go through awrite barrier that updates the remem-
bered set to account for the assignment.

The regional collector uses a variant of a Yuasa-style logging
write barrier (Yuasa 1990). Our write barrier logs three things: (1)
the location on the left hand side of the assignment, (2) its previous
contents, and (3) its new contents.

The first is for remembered set and summary set maintenance.
The second is for snapshot maintenance (the marker). The third
identifies which summary set (if any) needs maintenance for the
log entry.

2.8 Mutator Stacks

The regional collector assumes mutator stacks are constructed
from heap-allocated objects of bounded size, as though all stack
frames were allocated on the heap (Appel 1992). Although mixed
stack/heap, incremental stack/heap, Hieb-Dybvig-Bruggeman, and
Cheney-on-the-MTA strategies are often used (Clinger et al. 1999;
Hieb et al. 1990), their bounded stack caches can be regardedas
special parts of the nursery. That allows a regional collector to deal
with them as though the mutator uses a pure heap strategy.

3. Collection Policies
This section describes the policies the collector follows to achieve
scalability, even in the worst case.

Some of the policies are parameterized by numerical parame-
ters:F1 (described in Section 2.3),F2 (3.2), F3 (3.2), R (3.3),S
(3.3),Lsoft andLhard (3.6). See section 5 for typical values. These
parameters provide implementors with valuable flexibility, but we
assume that the values of these parameters will be fixed by theim-
plementors of a regional collector, and will not be tailoredfor par-
ticular mutators.

3.1 Minor, Major, Full, and Mark Cycles

The nursery is collected every time a region is collected, but the
nursery may also be collected without collecting a region. Acollec-
tion that collects only the nursery is aminor collection. A collection
that collects both the nursery and a region is amajor collection.

The interval between successive collections, whether minor or
major, is aminor cycle. The interval between major collections is a
major cycle.

The interval between successive initiations of the summariza-
tion process is asummarization cycle.

Regions are ordered arbitrarily, and collected in roughly round-
robin fashion (see Figure 1), skipping popular and empty (unfilled)
regions. When all non-popular, non-empty regions have beencol-
lected, a newfull cyclebegins.

The snapshot-at-the-beginning marking process is initiated at
the start of a new full cycle. The interval between successive initi-
ations of the marking process is amark cycle.

Our proofs assume that mark and full cycles coincide, because
worst-case mutators require relatively frequent marking (to limit
the size of the remembered set and to reduce floating garbage). On
normal programs, however, the mark cycle may safely be several
times as long as a full cycle.

Usually there areF1 summarization cycles per full cycle, but
that can drop toF1/F3; see Section 3.3.

The number of major collections per full cycle is bounded by the
number of regionsN/R, whereN is the total size of all regions.

The number of minor collections per major cycle is mostly de-
termined by the promotion rate and by two parameters that express
the desired (soft) ratio and a mandatory hard bound onN divided
by the peak live storage.

3.2 Summarization Details

If the number of summary sets computed exceeds a fixed fraction
1/(F1F2) of the heap’s regions, then the summarization process
can be suspended until one of the regions associated with thenewly
computed summary sets is scheduled for the next collection.

If on the other hand the summarization process has to wave off
the construction of too many summary sets, then the summarization
process makes another pass over the remembered set, computing
summary sets for a different group of regions. The maximum num-
ber of passes that might be needed before1/(F1F2) of the heap’s
regions have been summarized is a parameterF3 whose value de-
pends upon parametersS, F1, andF2; see section 3.3.

Mutator actions can change which regions are classified as pop-
ular; popular regions can become unpopular, and vice versa.To
prevent this from happening at a faster rate than the collection
and summarization processes can handle, the mutator’s allocation
and assignment activity must be linked to collection and summa-
rization progress (measured by the number of regions collected
and progress made toward computation of summary sets).3 As ex-
plained in 4.2, this extremely rare contention between the summa-
rization process and the mutator determines the theoretical worst-
case MMU of the collector.

When a region is collected, its surviving objects move and
its other objects disappear. Entries for reclaimed objectsmust be
removed from all existing summary sets, and entries for surviving
objects must be updated to reflect the new addresses. A good
representation for summary sets allows this updating to be done
in time proportional to the size of the collected region.

3.3 Popular Regions

Suppose there areN/R regions, each of sizeR, so the total storage
occupied by all regions isN .

Definition 2. A region ispopularif its summary set would exceedS
times the size of the region itself, whereS is the collector’s wave-off
threshold.

3 This leads to a curious property: in a regional collector, allocation-free
code fragments containing assignment operations can causea collection
(and thus object relocation).

Scheme and Functional Programming, 2009 17

It is impossible for all regions to be more popular than average.
That observation generalizes to the following lemma.

Lemma 3. If S > 1, then the fraction of regions that are popular
is no greater than1/S.

Proof. If there were more than1/S popular regions, then the total
size of the summary sets for all popular regions would be greater
than

1

S

N

R
SR = N

That is impossible: there are onlyN words in all regions combined,
so how could more thanN words be pointing into the popular
regions?

Example: If S = 3, then at most1/3 of the regions are popular,
and not collecting those popular regions will add at most 50%to the
size of the heap.

Corollary 4. Suppose marking cycles coincide with full cycles,
and a new full cycle is about to start. LetPold be the volume of
reachable storage, as computed by the marking process, at the start
of the previous full cycle, and letA be an upper bound on the
storage allocated during the previous full cycle. IfS > 1, then
the fraction of regions that are popular is no greater than

Pold + A

S

Mutator activity can make previously popular regions unpop-
ular, and can make previously unpopular regions popular, but the
number of new pointers into a region is bounded by the number of
words allocated plus the number of distinct locations assigned. Fur-
thermore the fraction of popular regions can approach1/S only if
there are very few pointers into the unpopular regions. Thatmeans
the mutator would have to do a lot of work before it could prevent a
second or third pass of the summarization process from succeeding,
provided of course that the collector’s parameters are well-chosen.

Recall that the summarization process attempts to create sum-
mary sets for1/F1 of the regions in each pass, and that it keeps
making those passes until it has created summary sets for1/(F1F2)
of the regions.

Lemma 5. SupposeS, F1, andF2 are greater than 1, andF3 is a
positive integer. Suppose also that

c =
F2F3 − 1

F1F2
S − 1 > 0

and the mutator is limited tocN words allocated plus distinct
locations assigned while the summarization process is performing
up toF3 passes. ThenF3 passes suffice.

Proof. We calculate the smallest number of allocations and assign-
mentscN that would be required to leave at leasti regions popular
at the end of the summarization cycle. Ifi is less than or equal to
the bound given by lemma 3, then no allocations/assignmentsare
needed. Otherwise the smallest number of allocations/assignments
occurs when the bound given by lemma 3 is met at both the be-
ginning and end of the summarization cycle.4 If that bound is met
at the beginning of the cycle, then all non-popular regions have no
pointers into them, and it takesSR allocations/assignments to cre-
ate another popular region.

4 In other words, starting with fewer popular regionsincreasesthe mutator
activity required to end the cycle with largei; we are deriving theminimum
number of actions required.

The summarization process will compute usable summaries for
at least1/(F1F2) of all N/R regions if

1

F1F2

N

R
≤ F3

F1

N

R
− 1

S

N

R
− cN

SR

Equivalently

c ≤
„

F3

F1
− 1

S
− 1

F1F2

«
S

=
F2F3 − 1

F1F2
S − 1

That lemma, when combined with an upper bound for the dura-
tion of a collection, basically determines the theoreticalworst-case
MMU. See section 4.2.

For simplicity, we will henceforth assume thatF1/F3 is an
integer.

The following lemma bounds the number of regions that will
not be collected during a full cycle.

Lemma 6. Within any full cycle, the fraction of regions whose
summary sets are not computed by the summarization process is
no greater than

1− 1

F2F3

Proof. Each summarization cycle makes up toF3 passes, summa-
rizing 1/F1 of the regions in each pass over the remembered set,
to obtain at least1/(F1F2) usable summary sets. In the worst case,
there areF1/F3 summarization cycles in a full cycle. The largest
possible fraction of unusable summary sets is therefore

F1

F3

„
F3

F1
− 1

F1F2

«
= 1− 1

F2F3

Each major collection consumes one summary set. The worst-
case MMU is calculated by assuming each summary cycle yields
only

1

F1F2
· N

R

usable summaries. The worst-case MMU is therefore unaffected by
starting each summarization cycle when the number of summary
sets has been reduced to the value used to calculate the worst-case
MMU.

Corollary 7. The space occupied by summary sets is never more
than

SF3

F1
N

Proof. During any summarization cycle, the space occupied by the
summary sets being computed is bounded byN + cN . Hence the
total space occupied by all summary sets is bounded by

„
1

F1F2
· N

R

«
SR + N + cN

=
SN

F1F2
+ N +

„
F2F3 − 1

F1F2
S − 1

«
N

=
SF3

F1
N

18 Scheme and Functional Programming, 2009

3.4 Fragmentation

As was mentioned in section 2 and justified in section 7, the re-
gional collector assumes objects are limited to some sizem < R.
The Cheney algorithm ensures that worst-case fragmentation in
collected regions is less thanm/R. Our calculations assume that
ratio is negligible.

3.5 Work-Based Accounting

The regional collector performs work in proportion to a slightly
peculiar accounting of mutator work. The peculiarities reflect our
focus on worst cases, which occur when the rate of promotion out
of the nursery is nearly 100% and the mutator spends almost all of
its time allocating storage and performing assignments.

The mutator’s work is measured by the volume of storage that
survives to be promoted out of the nursery and the number of
assignments that go through the write barrier. If we ignore the
nursery (which has little effect on the worst case) then promoted
objects are, in effect, newly allocated within some region.

The collector’s work is measured by the number of regions
collected. A full cycle concludes when all nonempty, non-popular
regions have been collected, so the number of regions collected also
measures time relative to the current full cycle. That notion of time
drives the scheduling of marking and summarization processes.

The marking and summarization processes are counted as over-
head, not work. Our calculations assume their cost is evenlydis-
tributed (at the fairly coarse resolution of one major cycle) over the
interval they are active, using mutator work as the measure of time.
That makes sense for worst cases, and overstates the collector’s rel-
ative overhead when the mutator does things besides allocation and
assignments (because counting those other things as work would
increase the mutator utilization).

3.6 Matching Collection Work to Allocation

At the beginning of a full cycle, the regional collector calculates
the amount of storage the mutator will allocate (that is, promote
into regions) during the full cycle.

Almost any policy that makes the mutator’s work proportional
to the collector’s work would suffice for the proof of our mainthe-
orem, but the specific values of worst-case constants are sensitive
to details of the policy. Furthermore, several different policies may
have essentially the same worst-case performance but radically dif-
ferent overall performance on normal programs.

We are still experimenting with different policies. The policy
stated below is overly conservative, but allows simple proofs of this
section’s lemmas becauseA is a monotonically increasing function
of the peak live storage, and does not otherwise depend upon the
current state of the collector.

Outside of this section, nothing depends upon the specific policy
stated below. The proof of our main theorem relies only upon its
properties as encapsulated by lemmas 9 and 10.

The following policy computes a hard lower bound for the
amount of free space that will become available as regions are
collected during this full cycle, and divides that free space equally
between this full cycle and the next. If promoting that volume of
storage might exceed the desired bound on heap size, then the
promotion budget for this full cycle is reduced accordingly.

Policy 8. The promotion to be performed during the coming full
cycle is

A = min

„
1

2
((1− k)Lhard− 1)Pold, (Lsoft− 1)Pold

«

where

• k is any fixed upper bound for the fraction of nonempty regions
that go uncollected within a full cycle. (Lemma 6 calculatesa
specific value fork.)

• Pold is the peak live storage, computed as the maximum value
of Nold (see below).

• Nold is the volume of reachable storage at the beginning of the
previous full cycle, as measured by the marking process during
that cycle; if this is the first full cycle, thenNold is the size of
the initial heap plus some headroom.

• Lsoft is the desired ratio ofN to peak live storage.
• Lhard > 1/(1 − k) is a fixed hard bound on the ratio ofN to

peak live storage at the beginning of a full cycle.

The two lemmas below express the only properties thatA must
have.

Lemma 9. If the collector parameters are consistent, thenA is in
Θ(Pold).

The following lemma states the regional collector’s most critical
invariant, and establishes that this invariant is preserved by every
full cycle.

The critical insight of its proof is that the Cheney collection pro-
cess reclaims all storage that was unreachable as of the beginning
of the previous full cycle, except for the bounded fraction of objects
that lie in uncollected regions. Furthermore there is no fragmenta-
tion among the survivors of collected regions, so the total storage
in all regions at the end of a full cycle, excluding free spacerecov-
ered by the cycle, is the sum of the total storage occupied by the
survivors, the regions that aren’t collected, and the storage that was
promoted into regions during the cycle.

Lemma 10. LetN0 be the volume of storage in all regions, includ-
ing live storage and garbage but not free space, at the beginning of
a full cycle. ThenN0 ≤ N ≤ LhardPold.

Proof. The lemma is true at the beginning of the first full cycle.
At the beginning of the second full cycle,N0 consists of

• storage that was reachable at the beginning of the first full cycle
(bounded byNold)

• storage in uncollected regions (bounded bykN)
• storage promoted into regions during the previous full cycle

(bounded byA)

At the beginning of subsequent full cycles,N0 consists of

• storage that was reachable at the beginning of the full cycle
before the previous full cycle and is still reachable (bounded by
Nold)

• storage in uncollected regions (bounded bykN)
• storage promoted into regions during the previous full cycle

(bounded byA)
• storage promoted into regions during the cycle before the pre-

vious full cycle (bounded byA, becauseA is nondecreasing)

Therefore

N0 ≤ Nold + kN + A + A

= Nold + kN + ((1− k)Lhard− 1)Pold
≤ Pold + kLhardPold + ((1− k)Lhard− 1)Pold
= LhardPold

Scheme and Functional Programming, 2009 19

4. Worst-case Bounds
The subsections below sketch proofs for the three parts of our main
theorem, which was stated in section 1.2.

We use asymptotic calculations because we cannot know the
hardware- and software-dependent relative cost of basic operations
such as allocations, write barriers, marking or tracing a word of
memory, and so on. Constant factors are important, however,so we
make a weak attempt to estimate some constants by assuming that
all basic operations have the same cost per word. That is roughly
true, but only for appropriate values of “roughly”. The constant
factors calculated for space may be more trustworthy than those
calculated for time.

4.1 GC Pauses

It’s easy to calculate an upper bound for the duration of major
collections. The size of the region to be collected is a constantR.
The size of its summary set is bounded bySR. The summary and
mark-stack state to be updated is bounded byO(R). A Cheney
collection of the region therefore takes timeO(R + SR) = O(R).

4.2 Worst-case MMU

For any resolution∆t, the minimum mutator utilization is the
infimum, over some set of intervals of length∆t, of the mutator’s
CPU time during that interval divided by∆t (Cheng and Blelloch
2001). The MMU is therefore a function from resolutions to the
interval [0, 1].

The obvious question is: What set of intervals are we talk-
ing about? In most cases, an MMU is defined over the intervals
recorded during some specific execution of some specific bench-
mark on some specific machine. We’ll call that anobserved MMU.

Our main theorem uses a very different notion of MMU, which
can be regarded as the infimum of observed MMUs over all possi-
ble executions of all possible benchmarks. We have been referring
to that notion as thetheoretical worst-case MMU.

The theoretical worst-case MMU is the notion that matters when
we talk about worst-case guarantees or scalable algorithms.

The theoretical worst-case MMU is easily bounded above using
observed MMUs; for example, an observed MMU of zero implies a
theoretical worst-case MMU of zero. On the other hand, we cannot
use observed MMUs to prove that a regional collector’s theoretical
worst-case MMU is bounded below by a non-zero constant. Our
only hope is to prove something like our main theorem.

Some programs reach a storage equilibrium, which allows us
to define the inverse load factorL as the ratio of heap size to
reachable heap storage. Although some collectors can do better
on some programs, it appears that, for any garbage collector, the
theoretical worst-case ratio of allocation to marking is less than or
equal toL−1, from which it follows that there must be resolutions
at which the worst-case MMU is less than or equal to

L− 1

(L− 1) + 1
=

L− 1

L

For a stop-and-collect collector, the worst-case MMU is zero for
intervals shorter than the duration of the worst-case collection. For
collectors that occasionally perform a full collection, taking time
proportional to the reachable storage, the theoretical worst-case
MMU is therefore zero at all resolutions. If there is some finite
bound on the worst-case gc pause, however, then the theoretical
worst-case MMU may be positive for sufficiently large resolutions.

Our main theorem claims this is true for a regional collector
at resolutions greater than3c0, wherec0 is a bound on the worst-
case duration of a gc pause. At that resolution and above, theworst
case occurs when two worst-case gc pauses surround a mutator
interval in which the mutator performs a worst-case (small)amount
of work. The two gc pauses takeO(R) time, so we need to show

that the mutator will performΩ(R) work between every two major
collections.

The regional collector performsΘ(N/R) major collections per
full cycle, and the scheduling of those collections is driven by mu-
tator work. Between two successive major collections, the mutator
performsΩ(AR/N) work, whereA, the promotion per full cycle
as defined in section 3.6, is inΘ(Pold) and therefore inΩ(N).

If the regional collector had no overhead outside of major col-
lections, the paragraph above would establish that the theoretical
worst-case MMU at that resolution is bounded below by a constant.
Since the regional collector does have overhead from the mark-
ing and summarization processes, we have yet to establish that (1)
the overhead per major cycle of those processes isO(R) and (2)
their overhead is distributed fairly evenly within the interval; that
is, there are no subintervals of duration3c0 or longer that have an
overly high concentration of overhead or overly low fraction of mu-
tator work.

The marking process’s overhead per full cycle isO(N), and
standard scheduling algorithms suffice to ensure that its overhead
per major cycle isO(R), with that overhead being quite evenly
distributed when observed at the coarse resolution of3c0.

The summarization process, as described in sections 2.3 and3.3,
is more complicated. The summarization process performs uptoF3

passes over the remembered set per summarization cycle. Each pass
takesO(N) time to scan the remembered set, while creating

O

„
1

F1

N

R
SR

«

entries in the summary sets. There are betweenF1 andF1/F3 sum-
marization cycles per full cycle, distributed as evenly as those tight
constant bounds allow. In conclusion, the summarization process
hasO(N) overhead per full cycle andO(R) overhead per major
cycle.

That would complete the proof of part 2, except for one nasty
detail mentioned in section 2.3 and lemma 5: The mutator’s work
during summarization is limited tocN , wherec is the constant
defined in lemma 5.

That doesn’t interfere with the proof of part 2, because the
mutator is still performingΘ(N) work per summarization cycle,
but it does lower mutator utilization. If we assume that all basic
operations have about the same cost per word, then the theoretical
worst-case MMU at sufficiently large resolutions is a constant of
which we have some actual knowledge.

Lemma 11. When regarded as a function of the collector’s pa-
rameters, the regional collector’s theoretical worst-case MMU is
roughly proportional to

SF2F3 − S − F1F2

(S + 1)(F2F3 + 2) + F1F2F3

Proof. The worst-case MMU is proportional to the worst-case mu-
tator work accomplished during a major cycle, divided by the
worst-case cost of the marking and summarization processesduring
a major cycle plus the worst-case cost of the two major collections
that surround the mutator work. We assume that work and costs
are spread evenly across the relevant cycles; any bounded degree of
unevenness can be absorbed by the constant of proportionality.

The number of regions collected during a worst-case summa-
rization cycle is

d =
1

F1F2

N

R

• The worst-case mutator work per major cycle iscN/d.
• The worst-case cost of summarization per major cycle is

F3N +
F3

F1

N

R
SR = (F3 +

F3

F1
S)N

20 Scheme and Functional Programming, 2009

divided byd.
• The worst-case cost of the marking process during a major cycle

is F2F3R, which is N divided by the worst-case number of
major collections during a full cycle (as given by lemma 6).

• The worst-case cost of a major collection isR + SR.

The theoretical worst-case MMU is therefore roughly proportional
to

F1F2cR

2(1 + S)R + F1F2(F3 + SF3/F1)R + F2F3R

=
SF2F3 − S − F1F2

(S + 1)(F2F3 + 2) + F1F2F3

That calculation was pretty silly, but gives us quantitative in-
sight into how much we can improve the theoretical worst-case
MMU by choosing good values for the collector’s parameters or
by designing a more efficient summarization process.

4.3 Worst-case Space

The regional collector allocates a new region only when the current
set of regions does not have enough free space to accomodate all of
the objects that need to be promoted out of the nursery. Lemmas 9
and 10 therefore establish thatN , the total storage occupied by all
regions, is inΘ(Pold) (wherePold is a lower bound for the peak
live storage).

The remembered set isO(N). The set of previously computed
summary sets that have not yet been consumed by a major collec-
tion isO(N). The set of summary sets currently under construction
is O(N). The mark bitmap isO(N). Each mark stack (one per re-
gion) isO(R), so the total size for all mark stacks isO(N).

The total space required by the regional collector is therefore
Θ(Pold). The specific constants of proportionality depend upon
collector parametersLhard, S, F1, andF2 as well as details of the
collector’s data structures; for example, the size of the mark bitmap
might beN , N/2, N/4, N/8, N/32, orN/64 depending on object
alignment, granularity of marking, and number of bits per mark.
With plausible assumptions about data structures, the theoretical
worst-case space is about

„„
5

4
+

SF3

F1

«
Lhard +

1

2

«
P

whereP is the peak reachable storage.
No program can reach theoretical worst-case bounds for all

of the collector’s data structures simultaneously. For example, the
mark stack’s worst case is achieved when the heap is filled by
a single linked structure of objects with only two fields. That
means half the pointers are perfectly distributed among regions,
which halves the worst-case number of popular regions; it also
removes the factor ofLhard, because all objects that get pushed
onto the mark stack are reachable. On gc-intensive benchmarks,
our prototype uses about the same amount of storage as stop-and-
copy or generational collectors.

4.4 Floating Garbage

Floating garbageis storage that is reachable from the remembered
set but is not reachable from mutator structures (and will not be
marked by the next snapshot-at-the-beginning marking process).

In the calculations above, the peak reachable storageP does
not include floating garbage, but the theoretical worst-case bounds
do include floating garbage. In this section, we calculate a bound
for how much of the worst-case space can be occupied by floating
garbage.

When bounding the space used by collectors that never perform
a full collection, the hard part is to find an upper bound for floating
garbage. The regional collector is especially interestingbecause

• When a region is collected, its objects that were unreachable as
of the beginning of the most recently completed marking cycle
will be reclaimed.

• The regional collector does not guarantee that all unreachable
objects will eventually be collected.

• The regional collector does guarantee that the total volume
of unreachable objects is always bounded by a small constant
times the total volume of reachable objects.

Suppose some objectx, residing in some regionr, becomes
unreachable. If there are no references tox from outsider, then
x will be reclaimed the next timer is collected.

If there are references tox from outsider, then those references
will be removed from the remembered set at the end of the first
marking cycle that begins afterx becomes unreachable (because all
references to an unreachable object are from unreachable objects).
Thenx will be reclaimed by the first collection ofr that follows the
completion of that marking cycle.

On the other hand, there is no guarantee thatr will ever be col-
lected.r will remain forever uncollected if and only if the summa-
rization process deemsr popular on every attempt to constructr’s
summary set.

Lemma 3 proves that the total volume of popular regions is no
greater thanN/S. Lemma 10 proves thatN ≤ LhardP , where
P is the peak live storage. Hence the total volume of perpetually
uncollected garbage is no greater thanLhard/S times the peak live
storage.

4.5 Collector Parameters

Most of the collector’s parameters can be changed at the beginning
of any full cycle. If the parameters change at the beginning of a full
cycle, then it will take at most two more full cycles for the collector
to perform within the theoretical worst-case bounds for thenew
parameters.

5. Near-Worst-Case Benchmarks
We have implemented a prototype of the regional collector, and will
provide a more detailed report on its engineering and performance
in some other paper. For this paper, we compare its performance
to that of several other collectors on a very simple but extremely
gc-intensive benchmark (Clinger 2009).

The benchmark repeatedly allocates a list of one million ele-
ments, and then stores the list into a circular buffer of sizek. The
number of popular objects (used as list elements) is a separate pa-
rameterp; with p = 0, the list elements are small integers, which
are usually represented by non-pointers that the garbage collector
does not have to trace.

To illustrate scalability and the effect of popular objects, we ran
three versions of the benchmark:

• with k = 10 andp = 0

• with k = 50 andp = 0

• with k = 50 andp = 50

All three versions allocate exactly the same amount of storage,
but the peak storage withk = 10 is about one fifth of the peak
storage withk = 50. The third version, with popular objects, is
the most challenging benchmark we have been able to devise for
the regional collector. The queue-like object lifetimes ofall three
versions make them near-worst-case benchmarks for generational

Scheme and Functional Programming, 2009 21

system version technology elapsed gc time max gc pause max variation max RSIZE
(sec) (sec) (sec) (sec) (MB)

Larceny prototype regional 192 170 .07 .60 386
Gambit v4.4.3 stop© 63 44 .52 493
Ypsilon 0.9.6-update3 mostly concurrent 265 ≥ 53 .64 ? 711
Sun JVM 1.5.0 generational 175 ? .78 333
Larceny prototype generational 109 88 .80 .88 555
Sun JVM 1.5.0 parallel 275 ? .91 511
Larceny prototype stop© 76 55 .90 .94 518
Chicken 4.0.0 Cheney-on-the-MTA 87 36 1. 490
PLT v4.1.4 generational 227 211 1. 617
Ikarus 0.0.3 generational 264 242 2.25 1055
Sun JVM 1.5.0 incremental mark/sweep 409 ? 3.41 530

Figure 2. GC-intensive performance with about 160 MB of live storage.

system version technology elapsed gc time max gc pause max variation max RSIZE
(sec) (sec) (sec) (sec) (MB)

Larceny prototype regional 212 187 .11 .7 1808
Ypsilon 0.9.6-update3 mostly concurrent 24971 ≥ 24818 2.4 ? 2067
Gambit v4.4.3 stop© 68 47 2.5 2363
Chicken 4.0.0 Cheney-on-the-MTA 118 62 4. 1955
Sun JVM 1.5.0 parallel 311 ? 4.2 1973
Larceny prototype generational 149 128 4.2 4.3 2073
Larceny prototype stop© 119 95 4.5 4.5 2058
Sun JVM 1.5.0 generational 212 ? 4.9 1497
PLT v4.1.4 generational 286 273 5. 2109
Ikarus 0.0.3 generational 419 371 11.6 2575
Sun JVM 1.5.0 incremental mark/sweep 457 ? 15.8 2083

Figure 3. GC-intensive performance with about 800 MB of live storage.

system version technology elapsed gc time max gc pause max variation max RSIZE
(sec) (sec) (sec) (sec) (MB)

Larceny prototype regional 618 592 .35 2.9 1865
Gambit v4.4.3 stop© 72 51 2.7 2363
Ypsilon 0.9.6-update3 mostly concurrent 28366 ≥ 28212 2.89 ? 1772
Sun JVM 1.5.0 parallel 314 ? 4.1 1918
Larceny prototype generational 162 141 4.5 4.6 2064
Larceny prototype stop© 120 96 4.8 4.8 2060
Chicken 4.0.0 Cheney-on-the-MTA 127 69 5. 1955
Sun JVM 1.5.0 generational 216 ? 5.0 1497
PLT v4.1.4 generational 339 320 5. 2089
Ikarus 0.0.3 generational 427 409 10.7 2588
Sun JVM 1.5.0 incremental mark/sweep 479 ? 18.1 2083

Figure 4. GC-intensive performance with 800 MB live storage and 50 popular objects.

collectors in general, and their simplicity and regularitymake the
results easy to interpret.

To eliminate pair-specific optimizations that might give Larceny
(and some other systems) an unfair advantage, the lists are con-
structed from two-element vectors. Hence the representation of
each list in Scheme is likely to resemble the representationused
by Java and similar languages. In Larceny and in Sun’s JVM, each
element of the list occupies four 32-bit words (16 bytes), and each
list occupies 16 megabytes.

The benchmarks allocate one thousand of those lists, which is
enough for the timing to be dominated by the steady state but small
enough for convenient benchmarking.

We benchmarked a prototype fork of Larceny with three dif-
ferent collectors. The regional collector was configured with a 1-
megabyte nursery, 8-megabyte regions (R), a waveoff threshold of

S = 8, and parametersF1 = 2, F2 = 2, andF3 = 1; these pa-
rameters have worked well for a wide range of benchmarks, and
were not optimized for the particular benchmarks reported here. To
make the generational collector more comparable to the regional
collector, it was benchmarked with a nursery size of 1 MB instead
of the usual 4 MB.

For perspective, we benchmarked several other systems as well.
We ran all benchmarks on a MacBook Pro equipped with a 2.4 GHz
Intel Core 2 Duo (with two processor cores) and 4 GB of 667 MHz
DDR2 SDRAM. Only three of the collectors made use of the sec-
ond processor core: Ypsilon, Sun’s JVM with the parallel collec-
tor, and Sun’s JVM with the incremental mark/sweep collector. For
those three systems, the total cpu time was greater than the elapsed
times reported in this paper.

22 Scheme and Functional Programming, 2009

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000

m
in

im
um

 m
ut

at
or

 u
til

iz
at

io
n

(%
)

interval in milliseconds

observed MMU for queue:10

regional
default generational

stop-and-copy

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000

m
in

im
um

 m
ut

at
or

 u
til

iz
at

io
n

(%
)

interval in milliseconds

observed MMU for queue:50

regional
default generational

stop-and-copy

Figure 5. Observed MMU fork = 10 andk = 50.

Figures 2, 3, and 4 report the elapsed time (in seconds), the
total gc time (in seconds), the duration of the longest pauseto
collect garbage (in seconds), the maximum variation (calculated by
subtracting the average time to create a million-element list from
the longest time to create one of those lists), and the maximum
RSIZE (in megabytes) reported bytop.

For most collectors, the maximum variation provides a good es-
timate of the longest pause for garbage collection. For the regional
collector, however, most of the maximum variation is causedby un-
even scheduling of the marking and summarization processes. With
no popular objects, the regional collector’s total gc time includes
51 to 54 seconds of marking and about 1 second of summarization.
With 50 popular objects, the marking time increased to 104 seconds
and the summarization time to 152 seconds. It should be possible
to decrease the maximum variation of the regional collectorby im-
proving the efficiency of its marking and summarization processes
and/or the regularity of their scheduling.

Figure 5 shows the MMU (minimum mutator utilization as a
function of time resolution) for the three collectors implemented
by our prototype fork of Larceny.

Although none of the other collectors were instrumented for
MMU, their MMU would be zero at resolutions up to the longest gc
pause, and their MMU at every resolution would be less than their
average mutator utilization (which can be estimated by subtracting
the total gc time from the elapsed time and dividing by the elapsed
time).

As can be seen from figures 2 and 3, simple garbage col-
lectors often have good worst-case performance. Gambit’s non-
generational stop© collector has the best throughput on this
particular benchmark, followed by Larceny’s stop© collector
and Chicken’s Cheney-on-the-MTA (which is a relatively simple
generational collector).

Of the benchmarked collectors, Sun’s incremental mark/sweep
collector most resembles a soft real-time collector; it combines low
throughput with inconsistent mutator utilization. Ypsilon performs
poorly on the larger benchmarks, apparently because it needs more
than 2067 megabytes of RAM, which is the largest heap it supports;
Ypsilon’s representation of a Scheme vector may also consume
more space than in other systems.

The regional collector’s throughput and gc pause times are de-
graded by popular objects, but its gc pause times remain the best
of any collector tested, while using less memory than any system
except for Sun’s default generational collector.

The regional collector’s scalability can be seen by comparing
its pause times and MMU fork = 10 andk = 50. The maximum

pause time increases only slightly, from .07 to .11 seconds.For all
other systems whose pause times were measured with sub-second
precision, the pause time increased by a factor of about 5 (because
multiplying the peak live storage by 5 also multiplies the time for
a full collection by 5). The regional collector’s MMU is almost the
same fork = 10 as fork = 50; for all other collectors, the MMU
degrades substantially as the peak live storage increases.

6. Related Work
6.1 Generational garbage collection

Generational collection was introduced by (Lieberman and Hewitt
1983). A simplification of that design was first implemented by
(Ungar 1984). Most modern generational collectors are modeled
after Ungar’s, but our regional collector’s design is more similar to
that of Lieberman and Hewitt.

6.2 Heap partitioning

Our regional collector is centered around the idea of partitioning the
heap and collecting the parts independently. (Bishop 1977)allows
single areas to be collected independently; his work targets Lisp
machines and requires hardware support.

The Garbage-Firstcollector of (Detlefs et al. 2004) inspired
many aspects of our regional collector. Unlike the garbage-first col-
lector, which uses a points-into remembered set representation with
no size bound, we use a points-outof remembered set representation
and points-into summaries which are bounded in size. The garbage-
first collector does not have worst-case bounds on space usage,
pause times, or MMU. According to Sun, the garbage-first collec-
tor’s gc pause times are “sometimes better and sometimes worse
than” the incremental mark/sweep collector’s (Sun Microsystems
2009).

The Mature Object Space(a.k.a.Train) algorithm of (Hudson
and Moss 1992) uses a fixed policy for choosing which regions
to collect. To ensure completeness, their policy migrates objects
across regions until a complete cycle is isolated to its own train
and then collected. This gradual migration can lead to significant
problems with floating garbage. Our marking process eliminates
floating garbage in collected regions, while our handling ofpopular
regions provides an elegant and novel solution that bounds the
worst-case storage requirements.

TheBeltwaycollector of (Blackburn et al. 2002) uses heap parti-
tioning and clever infrastructure to enable flexible selection of col-
lection policies via command line options. Their policy selection is
expressive enough to emulate the behavior of semi-space, genera-

Scheme and Functional Programming, 2009 23

tional, renewal-older-first, and deferred-older-first collectors. They
demonstrate that having a more flexible policy parameterization
can introduce improvements of 5%, 10%, and up to 35% over a
fixed generational collection policy. Unfortunately, in the Beltway
system one must choose between incremental or complete collec-
tion. The Beltway collector does not provide worst-case guarantees
independent of mutator behavior.

TheMarkCopycollector of (Sachindran and Moss 2003) breaks
the heap down into fixed sizedwindows. During a collection pause,
it builds up a remembered set for each window and then collects
each window in turn. An extension interleaves the mutator process
with individual window copy collection; one could see our design
as taking the next step of moving the marking process and remem-
bered set construction off of the critical path of the collector.

The Parallel Incremental Compaction algorithm of (Ben-Yitzhak
et al. 2002) also has similarities to our approach. They select an area
of the heap to collect, and then concurrently build a summaryfor
that area. However, they construct their points-into set bytracing
the whole heap, rather than maintaining points-outof remembered
sets. Their goals are also different from ours; their technique adds
incremental compaction to a mark-sweep collector, while wepro-
vide utilization and space guarantees in a copying collector.

6.3 Older-first garbage collection

Our design employs a round-robin policy for selecting the region
to collect next, focusing the collector on regions that havebeen
left alone the longest. Thus our regional collector, like older-first
collectors (Stefanović et al. 2002; Hansen and Clinger 2002), tends
to give objects more time to die before attempting to collectthem.

6.4 Bounding collection pauses

There is a broad body of research on bounding the pause times
introduced by garbage collection, including (Baker 1978; Brooks
1984; Appel et al. 1988; Yuasa 1990; Boehm et al. 1991; Baker
1992; Nettles and O’Toole 1993; Henriksson 1998; Larose and
Feeley 1998). In particular, (Blelloch and Cheng 1999) provides
proven bounds on pause-times and space-usage.

Several attempts to bring the pause-times down to precisions
suitable for real-time applications run afoul of the problem that
bounding an individual pause is not enough; one must also ensure
that the mutator can accomplish an appropriate amount of work in
between the pauses, keeping the processor utilization high. (Cheng
and Blelloch 2001) introduces the MMU metric to address this
issue. That paper presents anobservedMMU for a parallel real-
time collector, not a theoretical worst-case MMU.

6.5 Collection scheduling

Metronome (Bacon et al. 2003a) is a hard real-time collector. It
can use either time- or work-based collection scheduling, and is
mostly non-moving, but will copy objects to reduce fragmenta-
tion. Metronome also requires a read barrier, although the aver-
age overhead of the read barrier is only 4%. More significantly,
Metronome’s guaranteed bounds on utilization and space usage de-
pend upon the accuracy of application-specific parameters;(Ba-
con et al. 2003b) extends this set of parameters to provide tighter
bounds on collection time and space overhead.

Similarly, (Robertz and Henriksson 2003) depends on a sup-
plied schedule to provide real-time collector performance. Unlike
Metronome, it schedules work according to collection cycletimes
rather than finer grained quanta; like Metronome, it provides a
proven bound on space usage (that depends on the accurary of
application-specific parameters).

In contrast to those designs, our regional collector provides
worst-case guarantees independent of mutator behavior, but cannot
provide millisecond-resolution guarantees. Our regionalcollector

is mostly copying, has no read barrier, and uses work-based ac-
counting to drive the collection policy.

6.6 Incremental and concurrent collection

There are many treatments of concurrent collectors dating back
to (Dijkstra et al. 1978). In our collector, reclamation of dead
object state is not performed concurrently with the mutator, but the
activity of the summarization and marking processes could be.

Our summarization process was inspired by the performance
of Detlefs’ implementation of a concurrent thread that refines data
within the remembered set to reduce the effort spent towardsscan-
ning older objects for roots during a collection pause (Detlefs et al.
2002).

The summarization and marking processes require a write bar-
rier, which we piggy-back onto the barrier in place to support gen-
erational collection. This is similar to how (Printezis andDetlefs
2000), building on the work of (Boehm et al. 1991), merges the
overhead of maintaining concurrency related invariants with the
overhead of maintaining generational invariants.

7. Future Work
Our current prototype interleaves the marking and summarization
processes with the mutator, scheduling at the granularity of minor
cycles and the processing of write barrier logs. Both the marking
and summarization processes could be concurrent with the muta-
tor, which would improve throughput on programs that do not fully
utilize all processor cores. The marking process was actually im-
plemented as a concurrent thread by one of our earlier prototypes,
but the current single-threaded prototype makes it easier to measure
every process’s effect on throughput.

The collections performed by the regional collector can them-
selves be parallelized, but that is essentially independent of the de-
sign.

We assume that object sizes are bounded, so every object will
fit into a region. Because we have implemented our prototype in
Larceny, we can change both the compiler and the run-time repre-
sentations of objects, choosing representations that break extremely
large objects into pieces of bounded size.

The regional collector’s nursery provides most of the bene-
fits associated with generational garbage collection. Although the
regional collector sacrifices some throughput on extremelygc-
intensive programs, its performance on more normal programs can
and does approach that of contemporary generational collectors.
We will offer a more complete report on our prototype’s observed
performance in a separate paper.

8. Conclusions
We have described and prototyped a regional collector, which is a
new kind of generational garbage collector.

We have proved that the regional collector is scalable: It guar-
antees worst-case bounds for gc latency, minimum mutator utiliza-
tion, and space usage, independent of the peak live storage and mu-
tator behavior.

Such guarantees remain rare. Although our proof is not the first
of its kind, it may be the first to guarantee worst-case boundsfor
MMU as well as latency and space.5

The regional collector incorporates novel and elegant solutions
to the problems presented by popular objects and floating garbage.

5 For example, Cheng and Blelloch proved that a certain hard real-time
collector has nontrivial worst-case bounds for both gc latency and space,
but they had not yet invented the concept of MMU (Blelloch andCheng
1999).

24 Scheme and Functional Programming, 2009

We have prototyped the regional collector, using a near-worst-
case benchmark to illustrate its performance.

References
Andrew W. Appel.Compiling with Continuations, chapter 16, pages 205–

214. Cambridge University Press, 1992.

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent col-
lection on stock multiprocessors.ACM SIGPLAN Notices, 23(7):11–20,
1988.

David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage collecor
with low overhead and consistent utilization. InConference Record of
the Thirtieth Annual ACM Symposium on Principles of Programming
Languages, ACM SIGPLAN Notices, New Orleans, LA, January 2003a.
ACM Press.

David F. Bacon, Perry Cheng, and V.T. Rajan. Controlling fragmentation
and space consumption in the Metronome, a real-time garbagecollector
for Java. InACM SIGPLAN 2003 Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES’2003), pages 81–92, San
Diego, CA, June 2003b. ACM Press.

Henry G. Baker. List processing in real-time on a serial computer. Commu-
nications of the ACM, 21(4):280–94, 1978. Also AI Laboratory Working
Paper 139, 1977.

Henry G. Baker. The Treadmill, real-time garbage collection without
motion sickness.ACM SIGPLAN Notices, 27(3):66–70, March 1992.

Ori Ben-Yitzhak, Irit Goft, Elliot Kolodner, Kean Kuiper, and Victor
Leikehman. An algorithm for parallel incremental compaction. In David
Detlefs, editor,ISMM’02 Proceedings of the Third International Sympo-
sium on Memory Management, ACM SIGPLAN Notices, pages 100–
105, Berlin, June 2002. ACM Press.

Peter B. Bishop.Computer Systems with a Very Large Address Space and
Garbage Collection. PhD thesis, MIT Laboratory for Computer Science,
May 1977. Technical report MIT/LCS/TR–178.

Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley, and J. Eliot B.
Moss. Beltway: Getting around garbage collection gridlock. In Proceed-
ings of SIGPLAN 2002 Conference on Programming Languages Design
and Implementation, ACM SIGPLAN Notices, pages 153–164, Berlin,
June 2002. ACM Press. ISBN 1-58113-463-0.

Guy E. Blelloch and Perry Cheng. On bounding time and space for
multiprocessor garbage collection. InProceedings of SIGPLAN 1999
Conference on Programming Languages Design and Implementation,
ACM SIGPLAN Notices, pages 104–117, Atlanta, May 1999. ACM
Press.

Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel
garbage collection.ACM SIGPLAN Notices, 26(6):157–164, 1991.

Rodney A. Brooks. Trading data space for reduced time and code space in
real-time garbage collection on stock hardware. In Guy L. Steele, editor,
Conference Record of the 1984 ACM Symposium on Lisp and Functional
Programming, pages 256–262, Austin, TX, August 1984. ACM Press.

C. J. Cheney. A non-recursive list compacting algorithm.Communications
of the ACM, 13(11):677–8, November 1970.

Perry Cheng and Guy Blelloch. A parallel, real-time garbagecollector. In
Proceedings of SIGPLAN 2001 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices, pages 125–136,
Snowbird, Utah, June 2001. ACM Press.

William D. Clinger. Queue benchmark for estimating worst-case gc pause
times. Website, 2009. http://www.ccs.neu.edu/home/will/
Research/SW2009/.

William D. Clinger, Anne H. Hartheimer, and Eric M. Ost. Implementa-
tion strategies for first-class continuations.Higher-Order and Symbolic
Computation, 12(1):7–45, April 1999.

David Detlefs, William D. Clinger, Matthias Jacob, and RossKnippel. Con-
current remembered set refinement in generational garbage collection.
In Usenix Java Virtual Machine Research and Technology Symposium
(JVM ’02), San Francisco, CA, August 2002.

David Detlefs, Christine Flood, Steven Heller, and Tony Printezis. Garbage-
first garbage collection. In Amer Diwan, editor,ISMM’04 Proceedings

of the Fourth International Symposium on Memory Management, Van-
couver, October 2004. ACM Press.

Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: An exercise in cooper-
ation. Communications of the ACM, 21(11):965–975, November 1978.

Lars Thomas Hansen and William D. Clinger. An experimental study
of renewal-older-first garbage collection. InProceedings of the 2002
ACM SIGPLAN International Conference on Functional Programming
(ICFP02), volume 37(9) ofACM SIGPLAN Notices, pages 247–258,
Pittsburgh, PA, 2002. ACM Press.

Roger Henriksson.Scheduling Garbage Collection in Embedded Systems.
PhD thesis, Lund Institute of Technology, July 1998.

R. Hieb, R. K. Dybvig, and C. Bruggeman. Representing control in the
presence of first-class continuations.ACM SIGPLAN Notices, 25(6):66–
77, 1990.

Richard L. Hudson and J. Eliot B. Moss. Incremental garbage collection for
mature objects. In Yves Bekkers and Jacques Cohen, editors,Proceed-
ings of International Workshop on Memory Management, volume 637 of
Lecture Notes in Computer Science, University of Massachusetts, USA,
16–18 September 1992. Springer-Verlag.

Martin Larose and Marc Feeley. A compacting incremental collector and
its performance in a production quality compiler. In Richard Jones,
editor, ISMM’98 Proceedings of the First International Symposium on
Memory Management, volume 34(3) ofACM SIGPLAN Notices, pages
1–9, Vancouver, October 1998. ACM Press. ISBN 1-58113-114-3.

Henry Lieberman and Carl Hewitt. A real-time garbage collector based on
the lifetimes of objects.Commun. ACM, 26(6):419–429, 1983. ISSN
0001-0782.

Scott M. Nettles and James W. O’Toole. Real-time replication-based
garbage collection. InProceedings of SIGPLAN’93 Conference on
Programming Languages Design and Implementation, volume 28(6) of
ACM SIGPLAN Notices, Carnegie Mellon University, USA, June 1993.
ACM Press.

Tony Printezis and David Detlefs. A generational mostly-concurrent
garbage collector. In Tony Hosking, editor,ISMM 2000 Proceedings
of the Second International Symposium on Memory Management, vol-
ume 36(1) ofACM SIGPLAN Notices, Minneapolis, MN, October 2000.
ACM Press. ISBN 1-58113-263-8.

Sven Gestegard Robertz and Roger Henriksson. Time-triggered garbage
collection: robust and adaptive real-time gc scheduling for embedded
systems. InACM SIGPLAN 2003 Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES’2003), pages 93–102, San
Diego, CA, June 2003. ACM Press.

Narendran Sachindran and Eliot Moss. MarkCopy: Fast copying GC
with less space overhead. InOOPSLA’03 ACM Conference on Object-
Oriented Systems, Languages and Applications, ACM SIGPLAN No-
tices, Anaheim, CA, November 2003. ACM Press.

Darko Stefanović, Matthew Hertz, Stephen M. Blackburn, Kathryn S.
Mckinley, J. Eliot, and B. Moss. Older-first garbage collection in prac-
tice: Evaluation in a java virtual machine. InIn Memory System Perfor-
mance, pages 25–36. ACM Press, 2002.

Sun Microsystems. Java HotSpot garbage collection. Website,
2009. http://java.sun.com/javase/technologies/hotspot/
gc/g1_intro.jsp.

David M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm.ACM SIGPLAN No-
tices, 19(5):157–167, April 1984. Also published as ACM Soft-
ware Engineering Notes 9, 3 (May 1984) — Proceedings of the
ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-
tical Software Development Environments, 157–167, April 1984.

Taichi Yuasa. Real-time garbage collection on general-purpose machines.
Journal of Systems and Software, 11(3):181–198, 1990.

Scheme and Functional Programming, 2009 25

Randomized Testing in PLT Redex

Casey Klein
University of Chicago

clklein@cs.uchicago.edu

Robert Bruce Findler
Northwestern University

robby@eecs.northwestern.edu

Abstract
This paper presents new support for randomized testing in PLT
Redex, a domain-specific language for formalizing operational se-
mantics. In keeping with the overall spirit of Redex, the testing
support is as lightweight as possible—Redex programmers simply
write down predicates that correspond to facts about their calcu-
lus and the tool randomly generates program expressions in an at-
tempt to falsify the predicates. Redex’s automatic test case genera-
tion begins with simple expressions, but as time passes, it broadens
its search to include increasingly complex expressions. To improve
test coverage, test generation exploits the structure of the model’s
metafunction and reduction relation definitions.

The paper also reports on a case-study applying Redex’s testing
support to the latest revision of the Scheme standard. Despite a
community review period, as well as a comprehensive, manually-
constructed test suite, Redex’s random test case generation was able
to identify several bugs in the semantics.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—assertions, invariants, mechanical verification;
D.2.4 [Software Engineering]: Software / Program Verification—
assertion checkers; D.3.1 [Programming Languages]: Formal
Definitions and Theory

General Terms Languages, Design

Keywords Randomized test case generation, lightweight formal
models, operational semantics

1. Introduction
Much like software engineers have to cope with maintaining a pro-
gram over time with changing requirements, semantics engineers
have to maintain formal systems as they evolve over time. In order
to help maintain such formal systems, a number of tools that focus
on providing support for either proving or checking proofs of such
systems have been built (Hol [13], Isabelle [15], Twelf [16], and
Coq [22] being some of the most prominent).

In this same spirit, we have built PLT Redex [8, 12]. Unlike
other tools, however, Redex’s goal is to be as lightweight as possi-
ble. In particular, our goal is that Redex programmers should write
down little more than they would write in a formal model of their

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

system in a paper and to still provide them with a suite of tools
for working with their semantics. Specifically, Redex programmers
write down the language, reduction rules, and any relevant meta-
functions for their calculi, and Redex provides a stepper, hand-
written unit test suite support, automatic typesetting support, and
a number of other tools.

To date, Redex has been used with dozens of small, paper-size
models and a few large models, the most notable of which is the
formal semantics in the current standard of Scheme [21]. Redex is
also the subject of a book on operational semantics [7].

Inspired by QuickCheck [5], we recently added a random test
case generator to Redex and this paper reports on our experience
with it. The test case generator has found bugs in every model
we have tested with it, even the most well-tested and widely used
models (as discussed in section 4).

The rest of the paper is organized as follows. Section 2 intro-
duces Redex by presenting the formalization of a toy programming
language. Section 3 demonstrates the application of Redex’s ran-
domized testing facilities. Section 4 presents our experience apply-
ing randomized testing to a formal model of R6RS Scheme. Sec-
tion 5 describes the general process and specific tricks that Redex
uses to generate random terms. Finally, section 6 discusses related
work, and section 7 concludes.

2. Redex by Example
Redex is a domain-specific language, embedded in PLT Scheme. It
inherits the syntactic and lexical structure from PLT Scheme and al-
lows Redex programmers to embed full-fledged Scheme code into
a model, where appropriate. It also inherits DrScheme, the program
development environment, as well as a large standard library. This
section introduces Redex and context-sensitive reduction semantics
through a series of examples, and makes only minimal assump-
tions about the reader’s knowledge of operational semantics. In an
attempt to give a feel for how programming in Redex works, this
section is peppered with code fragments; each of these expressions
runs exactly as given (assuming that earlier definitions have been
evaluated) and the results of evaluation are also as shown (although
we are using a printer that uses a notation that matches the input
notation for values, instead of the standard Scheme printer).

Our goal with this section is to turn the formal model specified
in figure 1 into a running Redex program; in section 3, we will test
the model. The language in the figure 1 is expression-based, con-
taining application expressions (to invoke functions), conditional
expressions, values (i.e., fully simplified expressions), and vari-
ables. Values include functions, the plus operator, and numbers.

The eval function gives the meaning of each program (either
a number or the special token proc), and it is defined via a binary
relation −→ on the syntax of programs. This relation, commonly
referred to as a standard reduction, gives the behavior of programs
in a machine-like way, showing the ways in which an expression
can fruitfully take a step towards a value.

26

Language

e ::= (e e · · ·) | (if0 e e e) | v | x
v ::= λ(x · · ·). e | + |N
E ::= [] | (v · · · E e · · ·) | (if0 E e e)

Evaluator
eval : e→N∪ {proc}
eval(e) = n, if e −→∗ dne for some n ∈N

eval(e) = proc, if
{

e −→∗ λ(x · · ·). e
′
, or

e −→∗ +

Reduction relation
E[(if0 d0e e1 e2)] −→ E[e1]
E[(if0 v e1 e2)] −→ E[e2] v 6= d0e
E[((λ(x · · ·). e) v · · ·)] −→ E[e{x ← v, · · ·}]
E[(+ dne · · ·)] −→ E[d∑(n · · ·)e]

Figure 1. Mathematical Model of Core Scheme

The non-terminal E defines evaluation contexts. It gives the
order in which expressions are evaluated by providing a rule for
decomposing a program into a context—an expression containing
a “hole”—and the sub-expression to reduce. The context’s hole,
written [], may appear either inside an application expression, when
all the expressions to the left are already values, or inside the test
position of an if0 expression.

The first two reduction rules dictate that an if0 expression can
be reduced to either its “then” or its “else” subexpression, based on
the value of the test. The third rule says that function applications
can be simplified by substitution, and the final rule says that fully
simplified addition expressions can be replaced with their sums.

We use various features of Redex (as below) to illuminate the
behavior of the model as it is translated to Redex, but just to
give a feel for the calculus, here is a sample reduction sequence
illustrating how the rules and the evaluation contexts work together.

(+ (if0 0 1 2) (if0 2 1 0))
−→ (+ 1 (if0 2 1 0))
−→ (+ 1 0)
−→ 1

Consider the step between the first and second term. Both of the
if0 expressions are candidates for reduction, but the evaluation
contexts only allow the first to be reduced. Since the rules for if0
expressions are written with E[] outside of the if0 expression, the
expression must decompose into some E with the if0 expression in
the place where the hole appears. This decomposition is what fails
when attempting to reduce the second if0 expression. Specifically,
the case for application expressions requires values to the left of the
hole, but this is not the case for the second if0 expression.

Like a Scheme program, a Redex program consists of a series
of definitions. Redex programmers have all of the ordinary Scheme
definition forms (variable, function, structure, etc.) available, as
well as a few new definition forms that are specific to operational
semantics. For clarity, when we show code fragments, we italicize
Redex keywords, to make clear where Redex extends Scheme.

Redex’s first definition form is define-language . It uses a
parenthesized version of BNF notation to define a tree grammar,1
consisting of non-terminals and their productions. The following

1 See Tree Automata Techniques and Applications [6] for an excellent sum-
mary of the properties of tree grammars.

defines the same grammar as in figure 1, binding it to the Scheme-
level variable L.
(define-language L

(e (e e ...)
(if0 e e e)
v
x)

(v +
n
(λ (x ...) e))

(E hole
(v ... E e ...)
(if0 E e e))

(n number)
(x variable-not-otherwise-mentioned))

In addition to the non-terminals e, v, and E from the figure, this
grammar also provides definitions for numbers n and variables x.
Unlike the traditional notation for BNF grammars, Redex encloses
a non-terminal and its productions in a pair of parentheses and does
not use vertical bars to separate productions, simply juxtaposing
them instead.

Following the mathematical model, the first non-terminal in
L is e, and it has four productions: application expressions, if0
expressions, values, and variables. The ellipsis is a form of Kleene-
star; i.e., it admits repetitions of the pattern preceding it (possibly
zero). In this case, this means that application expressions must
have at least one sub-expression, corresponding to the function
position of the application, but may have arbitrarily many more,
corresponding to the function’s arguments.

The v non-terminal specifies the language’s values; it has three
productions—one each for the addition operator, numeric literals,
and functions. As with application expressions, function parameter
lists use an ellipsis, this time indicating that a function can have
zero or more parameters.

The E non-terminal defines the contexts in which evaluation can
occur. The hole production gives a place where evaluation can
occur, in this case, the top-level of the term. The second production
allows evaluation to occur anywhere in an application expression,
as long as all of the terms to the left of the have been fully evaluated.
In other words, this indicates a left-to-right order of evaluation. The
third production dictates that evaluation is allowed only in the test
position of an if0 expression.

The n non-terminal generates numbers using the built-in Redex
pattern number . Redex exploits Scheme’s underlying support for
numbers, allowing arbitrary Scheme numbers to be embedded in
Redex terms.

Finally, the x generates all variables except λ, +, and if0, using
variable-not-otherwise-mentioned . In general, the pattern
variable-not-otherwise-mentioned matches all variables
except those that are used as literals elsewhere in the grammar.

Once a grammar has been defined, a Redex programmer can use
redex-match to test whether a term matches a given pattern. It ac-
cepts three arguments—a language, a pattern, and an expression—
and returns #f (Scheme’s false), if the pattern does not match, or
bindings for the pattern variables, if the term does match. For ex-
ample, consider the following interaction:
> (redex-match L e (term (if0 (+ 1 2) 0)))
#f

This expression tests whether (if0 (+ 1 2) 0) is an expression
according to L. It is not, because if0 must have three subexpres-
sions.

When redex-match succeeds, it returns a list of match struc-
tures, as in this example.
> (redex-match

Scheme and Functional Programming, 2009 27

L
(if0 v e 1 e 2)
(term (if0 3 0 (λ (x) x))))

(list (make-match
(list (make-bind ’v 3)

(make-bind ’e 1 0)
(make-bind ’e 2 (term (λ (x) x))))))

Each element in the list corresponds to a distinct way to match the
pattern against the expression. In this case, there is only one way to
match it, and so there is only one element in the list. Each match
structure gives the bindings for the pattern’s variables. In this case,
v matched 3, e 1 matched 0, and e 2 matched (λ (x) x). The
term constructor is absent from the v and e 1 matches because
numbers are simultaneously Redex terms and ordinary Scheme
values (and this will come in handy when we define the reduction
relation for this language).

Of course, since Redex patterns can be ambiguous, there might
be multiple ways for the pattern to match the expression. This can
arise in two ways: an ambiguous grammar, or repeated ellipses.
Consider the following use of repeated ellipses.

> (redex-match L
(n 1 ... n 2 n 3 ...)
(term (1 2 3)))

(list (make-match
(list (make-bind ’n 1 (list))

(make-bind ’n 2 1)
(make-bind ’n 3 (list 2 3))))

(make-match
(list (make-bind ’n 1 (list 1))

(make-bind ’n 2 2)
(make-bind ’n 3 (list 3))))

(make-match
(list (make-bind ’n 1 (list 1 2))

(make-bind ’n 2 3)
(make-bind ’n 3 (list)))))

The pattern matches any sequence of numbers that has at least a
single element, and it matches such sequences as many times as
there are elements in the sequence, each time binding n 2 to a
distinct element of the sequence.

Now that we have defined a language, we can define the reduc-
tion relation for that language. The reduction-relation form
accepts a language and a series of rules that define the relation case-
wise. For example, here is a reduction relation for L. In preparation
for Redex’s automatic test case generation, we have intentionally
introduced a few errors into this definition. The explanatory text
does not contain any errors;2 it simply avoids mention of the mis-
takes.

(define eval-step
(reduction-relation
L
(--> (in-hole E (if0 0 e 1 e 2))

(in-hole E e 1)
"if0 true")

(--> (in-hole E (if0 v e 1 e 2))
(in-hole E e 2)
"if0 false")

(--> (in-hole E ((λ (x ...) e) v ...))
(in-hole E (subst (x v) ... e))
"beta value")

(--> (in-hole E (+ n 1 n 2))
(in-hole E ,(+ (term n 1) (term n 2)))
"+")))

2 We hope.

Each case begins with the arrow --> and includes a pattern, a term
template, and a name for the case. The pattern indicates when the
rule will fire and the term indicates what it should be replaced with.

Each rule begins with an in-hole pattern that decomposes
a term into an evaluation context E and some instruction. For
example, consider the first rule. We can use redex-match to test
its pattern against a sample expression.

> (redex-match L
(in-hole E (if0 0 e 1 e 2))
(term (+ 1 (if0 0 2 3))))

(list (make-match
(list (make-bind ’E (term (+ 1 hole)))

(make-bind ’e 1 2)
(make-bind ’e 2 3))))

Since the match succeeded, the rule applies to the term, with the
substitutions for the pattern variables shown. Thus, this term will
reduce to (+ 1 2), since the rule replaces the if0 expression with
e 1, the “then” branch, inside the context (+ 1 hole). Similarly,
the second reduction rule replaces an if0 expression with its “else”
branch.

The third rule defines function application in terms of a meta-
function subst that performs capture-avoiding substitution; its def-
inition is not shown, but standard.

The relation’s final rule is for addition. It exploits Redex’s em-
bedding in Scheme to use the Scheme-level + operator to perform
the Redex-level addition. Specifically, the comma operator is an
escape to Scheme and its result is replaced into the term at the ap-
propriate point. The term constructor does the reverse, going from
Scheme back to a Redex term. In this case, we use it to pick up the
bindings for the pattern variables n 1 and n 2.

This “escape” from the object language that we are modeling
in Redex to the meta-language (Scheme) mirrors a subtle detail
from the mathematical model in figure 1, specifically the use of
the d · e operator. In the model that operator translates a number
into its textual representation. Consider its use in the addition rule;
it defers the definition of addition to the summation operator, much
like we defer the definition to Scheme’s + operator.

Once a Redex programmer has defined a reduction relation, Re-
dex can build reduction graphs, via traces. The traces function
takes a reduction relation and a term and opens a GUI window
showing the reduction graph rooted at the given term. Figure 2
shows such a graph, generated from eval-step and an if0 ex-
pression. As the screenshot shows, the traces window also lets
the user adjust the font size and connects to dot [9] to lay out the
graphs. Redex can also detect cycles in the reduction graph, for
example when running an infinite loop, as shown in figure 3.

In addition to traces, Redex provides a lower-level interface
to the reduction semantics via the apply-reduction-relation
function. It accepts a reduction relation and a term and returns a list
of the next states, as in the following example.

> (apply-reduction-relation eval-step
(term (if0 1 2 3)))

(list 3)

For the eval-step reduction relation, this should always be a
singleton list but, in general, multiple rules may apply to the same
term, or a single rule may even apply in multiple different ways.

3. Random Testing in Redex
If we intend eval-step to model the deterministic evaluation of
expressions in our toy language, we might expect eval-step to
define exactly one reduction for any expression that is not already
a value. This is certainly the case for the expressions in figures 2
and 3.

28 Scheme and Functional Programming, 2009

Figure 2. A reduction graph with four expressions

Figure 3. A reduction graph with an infinite loop

To test this, we first formulate a Scheme function that checks
this property on one example. It accepts a term and returns true
when the term is a value, or when the term reduces just one way,
using redex-match and apply-reduction-relation .

;; value-or-unique-step? : term → boolean
(define (value-or-unique-step? e)

(or (redex-match L v e)
(= 1 (length (apply-reduction-relation

eval-step e)))))

Once we have a predicate that should hold for every term, we
can supply it to redex-check , Redex’s random test case gener-
ation tool. It accepts a language, in this case L, a pattern to gen-
erate terms from, in this case just e, and a boolean expression, in
this case, an invocation of the value-or-unique-step? function
with the randomly generated term.

> (redex-check
L e
(value-or-unique-step? (term e)))

counterexample found after 1 attempt:
q

Immediately, we see that the property does not hold for open terms.
Of course, this means that the property does not even hold for our
mathematical model! Often, such terms are referred to as “stuck”
states and are ruled out by either a type-checker (in a typed lan-
guage) or are left implicit by the designer of the model. In this case,
however, since we want to uncover all of the mistakes in the model,

we instead choose to add explicit error transitions, following how
most Scheme implementations actually behave. These rules gen-
erally reduces to something of the form (error description).
For unbound variables, this is the rule:
(--> (in-hole E x)

(error "unbound-id"))

It says that when the next term to reduce is a variable (i.e., the term
in the hole of the evaluation context is x), then instead reduce to an
error. Note that on the right-hand side of the rule, the evaluation
context E is omitted. This means that the entire context of the
term is simply erased and (error "unbound-id") becomes the
complete state of the computation, thus aborting the computation.

With the improved relation in hand, we can try again to uncover
bugs in the definition.
> (redex-check

L e
(value-or-unique-step? (term e)))

counterexample found after 6 attempts:
(+)

This result represents a true bug. While the language’s grammar
allows addition expressions to have an arbitrary number of argu-
ments, our reduction rule only covers the case of two arguments.
Redex reports this failure via the simplest expression possible: an
application of the plus operator to no arguments at all.

There are several ways to fix this rule. We could add a few rules
that would reduce n-ary addition expressions to binary ones and
then add special cases for unary and zero-ary addition expressions.
Alternatively, we can exploit the fact that Redex is embedded in
Scheme to make a rule that is very close in spirit to the rule given
in figure 1.
(--> (in-hole E (+ n ...))

(in-hole E ,(apply + (term (n ...))))
"+")

But there still may be errors to discover, and so with this fix in
place, we return to redex-check .
> (redex-check L

e
(value-or-unique-step? (term e)))

checking ((λ (i) 0)) raises an exception
syntax: incompatible ellipsis match counts
for template in: ...

This time, redex-check is not reporting a failure of the predicate
but instead that the input example ((λ (i) 0)) causes the model
to raise a Scheme-level runtime error. The precise text of this error
is a bit inscrutable, but it also comes with source location high-
lighting that pinpoints the relation’s application case. Translated
into English, the error message says that the this rule is ill-defined
in the case when the number of formal and actual parameters do not
match. The ellipsis in the error message indicates that it is the ellip-
sis operator on the right-hand side of the rule that is signaling the
error, since it does not know how to construct a term unless there
are the same number of xs and vs.

To fix this rule, we can add subscripts to the ellipses in the
application rule
(--> (in-hole E ((λ (x ... 1) e) v ... 1))

(in-hole E (subst (x v) ... e))
"beta value")

Duplicating the subscript on the ellipses indicates to Redex that it
must match the corresponding sequences with the same length.

Again with the fix in hand, we return to redex-check :
> (redex-check L

e

Scheme and Functional Programming, 2009 29

(value-or-unique-step? (term e)))
counterexample found after 196 attempts:
(if0 0 m +)

This time, Redex reports that the expression (if0 0 m +)
fails, but we clearly have a rule for that case, namely the first if0
rule. To see what is happening, we apply eval-step to the term
directly, using apply-reduction-relation , which shows that
the term reduces two different ways.

> (apply-reduction-relation eval-step
(term (if0 0 m +)))

(list (term +)
(term m))

Of course, we should only expect the second result, not the first.
A closer look reveals that, unlike the definition in figure 1, the
second eval-step rule applies regardless of the particular v in the
conditional. We fix this oversight by adding a side-condition
clause to the earlier definition.

(--> (in-hole E (if0 v e 1 e 2))
(in-hole E e 2)
(side-condition (not (equal? (term v) 0)))
"if0 false")

Side-conditions are written as ordinary Scheme code, following the
keyword side-condition , as a new clause in the rule’s definition.
If the side-condition expression evaluates to #f, then the rule is
considered not to match.

At this point, redex-check fails to discover any new errors in
the semantics. The complete, corrected reduction relation is shown
in figure 4.

In general, after this process fails to uncover (additional) coun-
terexamples, the task becomes assessing redex-check ’s success
in generating well-distributed test cases. Redex has some intro-
spective facilities, including the ability to count the number of
reductions that fire. With this reduction system, we discover that
nearly 60% of the time, the random term exercises the free vari-
able rule. To get better coverage, Redex can take into account
the structure of the reduction relation. Specifically, providing the
#:source keyword tells Redex to use the left-hand sides of the
rules in eval-step as sources of expressions.

> (redex-check L
e
(value-or-unique-step? (term e))
#:source eval-step)

With this invocation, Redex distributes its effort across the rela-
tion’s rules by first generating terms matching the first rule’s left-
hand side, then terms matching the second term’s left-hand side,
etc. Note that this also gives Redex a bit more information; namely
that all of the left-hand sides of the eval-step relation should
match the non-terminal e, and thus Redex also reports such viola-
tions. In this case, however, Redex discovers no new errors, but it
does get an even distribution of the uses of the various rewriting
rules.

4. Case Study: R6RS Formal Semantics
The most recent revision of the specification for the Scheme pro-
gramming language (R6RS) [21] includes a formal, operational se-
mantics defined in PLT Redex. The semantics was vetted by the
editors of the R6RS and was available for review by the Scheme
community at large for several months before it was finalized.

In an attempt to avoid errors in the semantics, it came with
a hand-crafted test suite of 333 test expressions. Together these
tests explore 6,930 distinct program states; the largest test case ex-
plores 307 states. The semantics is non-deterministic in order to

(define complete-eval-step
(reduction-relation
L

;; corrected rules
(--> (in-hole E (if0 0 e 1 e 2))

(in-hole E e 1)
"if0 true")

(--> (in-hole E (if0 v e 1 e 2))
(in-hole E e 2)
(side-condition (not (equal? (term v) 0)))
"if0 false")

(--> (in-hole E ((λ (x ... 1) e) v ... 1))
(in-hole E (subst (x v) ... e))
"beta value")

(--> (in-hole E (+ n ...))
(in-hole E ,(apply + (term (n ...))))
"+")

;; error rules
(--> (in-hole E x)

(error "unbound-id"))
(--> (in-hole E ((λ (x ...) e) v ...))

(error "arity")
(side-condition
(not (= (length (term (x ...)))

(length (term (v ...)))))))
(--> (in-hole E (+ n ... v 1 v 2 ...))

(error "+")
(side-condition (not (number? (term v 1)))))

(--> (in-hole E (v 1 v 2 ...))
(error "app")
(side-condition
(and (not (redex-match L + (term v 1)))

(not (redex-match L
(λ (x ...) e)
(term v 1))))))))

Figure 4. The complete, corrected reduction relation

avoid over-constraining implementations. That is, an implementa-
tion conforms to the semantics if it produces any one of the possible
results given by the semantics. Accordingly the test suite contains
terms that explore multiple reduction sequence paths. There are 58
test cases that contain at least some non-determinism and, the test
case with the most non-determinism visits 17 states that each have
multiple subsequent states.

Despite all of the careful scrutiny, Redex’s randomized testing
found four errors in the semantics, described below. The remain-
der of this section introduces the semantics itself (section 4.1), de-
scribes our experience applying Redex’s randomized testing frame-
work to the semantics (sections 4.2 and 4.3), discusses the current
state of the fixes to the semantics (section 4.4), and quantifies the
size of the bug search space (section 4.5).

4.1 The R6RS Formal Semantics
In addition to the features modeled in Section 2, the formal se-
mantics includes: mutable variables, mutable and immutable pairs,
variable-arity functions, object identity-based equivalence, quoted
expressions, multiple return values, exceptions, mutually recursive
bindings, first-class continuations, and dynamic-wind. The formal
semantics’s grammar has 41 non-terminals, with a total of 144 pro-
ductions, and its reduction relation has 105 rules.

The core of the formal semantics is a relation on program states
that, in a manner similar to eval-step in Section 2, gives the

30 Scheme and Functional Programming, 2009

behavior of a Scheme abstract machine. For example, here are two
of the key rules that govern function application.
(--> (in-hole P 1 ((λ (x 1 x 2 ... 1) e 1 e 2 ...)

v 1 v 2 ... 1))
(in-hole P 1 ((r6rs-subst-one

(x 1 v 1
(λ (x 2 ...) e 1 e 2 ...)))

v 2 ...))
"6appN"
(side-condition

(not (term (Var-set!d?
(x 1
(λ (x 2 ...) e 1 e 2 ...)))))))

(--> (in-hole P 1 ((λ () e 1 e 2 ...)))
(in-hole P 1 (begin e 1 e 2 ...))
"6app0")

These rules apply only to applications that appear in an evaluation
context P 1. The first rule turns the application of an n-ary function
into the application of an n− 1-ary function by substituting the first
actual argument for the first formal parameter, using the metafunc-
tion r6rs-subst-one. The side-condition ensures that this rule
does not apply when the function’s body uses the primitive set!
to mutate the first parameter’s binding; instead, another rule (not
shown) handles such applications by allocating a fresh location in
the store and replacing each occurrence of the parameter with a
reference to the fresh location. Once the first rule has substituted
all of the actual parameters for the formal parameters, we are left
with a nullary function in an empty application, which is covered
by the second rule above. This rule removes both the function and
the application, leaving behind the body of the function in a begin
expression.

The R6RS does not fully specify many aspects of evaluation.
For example, the order of evaluation of function application ex-
pressions is left up to the implementation, as long as the arguments
are evaluated in a manner that is consistent with some sequential
ordering (i.e., evaluating one argument halfway and then switching
to another argument is disallowed). To cope with this in the formal
semantics, the evaluation contexts for application expressions are
not like those in section 2, which force left to right evaluation, nor
do they have the form (e 1 ... E e 2 ...), which would al-
low non-sequential evaluation; instead, the contexts that extend into
application expressions take the form (v 1 ... E v 2 ...) and
thus only allow evaluation when there is exactly one argument ex-
pression to evaluate. To allow evaluation in other application con-
texts, the reduction relation includes the following rule.
(--> (in-hole P 1 (e 1 ... e i e i+1 ...))

(in-hole P 1
((λ (x) (e 1 ... x e i+1 ...)) e i))

"6mark"
(fresh x)
(side-condition (not (v? (term e i))))
(side-condition
(ormap (λ (e) (not (v? e)))

(term (e 1 ... e i+1 ...)))))

This rule non-deterministically lifts one subexpression out of the
application, placing it in an evaluation context where it will be im-
mediately evaluated then substituted back into the original expres-
sion, by the rule "6appN". The fresh clause binds x such that
it does not capture any of the free variables in the original appli-
cation. The first side-condition ensures that the lifted term is not
yet a value, and the second ensures that there is at least one other
non-value in the application expression (otherwise the evaluation
contexts could just allow evaluation there, without any lifting).

As an example, consider this expression:

(+ (+ 1 2)
(+ 3 4))

It contains two nested addition expressions. The "6mark" rule
applies to both of them, generating two lifted expressions, which
then reduce in parallel and eventually merge, as shown in this
reduction graph (generated and rendered by Redex).

(+ (+ 1 2) (+ 3 4))

((lambda (lifted)

 (+ lifted (+ 3 4)))

 (+ 1 2))

((lambda (lifted)

 (+ (+ 1 2) lifted))

 (+ 3 4))

((lambda (lifted)

 (+ lifted (+ 3 4)))

 3)

((lambda (lifted)

 (+ (+ 1 2) lifted))

 7)

((lambda () (+ 3 (+ 3 4))))((lambda () (+ (+ 1 2) 7)))

(begin (+ 3 (+ 3 4)))(begin (+ (+ 1 2) 7))

(+ 3 (+ 3 4))(+ (+ 1 2) 7)

(+ 3 7)

10

4.2 Testing the Formal Semantics, a First Attempt
In general, a reduction relation like → satisfies the following two
properties, commonly known as progress and preservation:

progress If p is a closed program state, consisting of a store and a
program expression, then either p is either a final result (i.e., a
value or an uncaught exception) or p reduces (i.e., there exists
a p′ such that p→ p′).

preservation If p is a closed program state and p→ p′, then p′ is
also a closed program state.

Together these properties ensure that the semantics covers all of
the cases and thus an implementation that matches the semantics
always produces a result (for every terminating program).

4.2.1 Progress
These properties can be formulated directly as predicates on terms.
Progress is a simple boolean combination of a result? predi-
cate (defined via a redex-match that determines if a term is a
final result), an open? predicate, and a test to make sure that
apply-reduction-relation finds at least one possible step.
The open? predicate uses a free-vars function (not shown, but
29 lines of Redex code) that computes the free variables of an R6RS
expression.
;; progress? : program → boolean
(define (progress? p)

(or (open? p)
(result? p)
(not (= 0 (length

(apply-reduction-relation

Scheme and Functional Programming, 2009 31

reductions
p))))))

;; open? : program → boolean
(define (open? p)

(not (= 0 (length (free-vars p)))))

Given that predicate, we can use redex-check to test it on the
R6RS semantics, using the top-level non-terminal (p∗).
(redex-check r6rs p∗ (progress? (term p∗)))

Bug one This test reveals one bug, a problem in the interaction
between letrec∗ and set!. Here is a small example that illus-
trates the bug.

(store ()
(letrec∗ ([y 1]

[x (set! y 1)])
y))

All R6RS terms begin with a store. In general, the store binds vari-
able to values representing the current mutable state in a program.
In this example, however, the store is empty, and so () follows the
keyword store.

After the store is an expression. In this case, it is a letrec∗
expression that binds y to 1 then binds x to the result of the assign-
ment expression (set! y 1). The informal report does not spec-
ify the value produced by an assignment expression, and the formal
semantics models this under-specification by rewriting these ex-
pressions to an explicit unspecified term, intended to represent
any Scheme value. The bug in the formal semantics is that it ne-
glects to provide a rule that covers the case where an unspecified
value is used as the initial value of a letrec∗ binding.

Although the above expression triggers the bug, it does so only
after taking several reduction steps. The progress? property, how-
ever, checks only for a first reduction step, and so Redex can only
report a program state like the following, which uses some internal
constructs in the R6RS semantics.

(store ((lx-x bh))
(l! lx-x unspecified))

Here (and in the presentation of subsequent bugs) the actual pro-
gram state that Redex identifies is typically somewhat larger than
the example we show. Manual simplification to simpler states is
straightforward, albeit tedious.

4.2.2 Preservation
The preservation? property is a bit more complex. It holds if the
expression has free variables or if each each expression it reduces
to is both well-formed according to the grammar of the R6RS
programs and has no free variables.

;; preservation? : program → boolean
(define (preservation? p)

(or (open? p)
(andmap (λ (q)

(and (well-formed? q)
(not (open? q))))

(apply-reduction-relation
reductions p))))

(redex-check r6rs p∗ (preservation? (term p∗)))
Running this test fails to discover any bugs, even after tens of thou-
sands of random tests. Manual inspection of just a few random pro-
gram states reveals why: with high probability, a random program
state has a free variable and therefore satisfies the property vacu-
ously.

4.3 Testing the Formal Semantics, Take 2
A closer look at the semantics reveals that we can usually perform
at least one evaluation step on an open term, since a free variable
is only a problem when the reduction system immediately requires
its value. This observation suggests testing the following property,
which subsumes both progress and preservation: for any program
state, either

• it is a final result (either a value or an uncaught exception),
• it does not reduce and it is open, or
• it does reduce, all of the terms it reduces to have the same (or

fewer) free variables, and the terms it reduces to are also well-
formed R6RS expressions.

The Scheme translation mirrors the English text, using the
helper functions result? and well-formed?, both defined using
redex-match and the corresponding non-terminal in the R6RS
grammar, and subset?, a simple Scheme function that compares
two lists to see if the elements of the first list are all in the second.
(define (safety? p)

(define fvs (free-vars p))
(define nexts (apply-reduction-relation

reductions p))
(or (result? p)

(and (= 0 (length nexts))
(open? p))

(and (not (= 0 (length nexts)))
(andmap (λ (p2)

(and (well-formed? p2)
(subset? (free-vars p2)

fvs)))
nexts))))

(redex-check r6rs p∗ (safety? (term p∗)))
The remainder of this subsection details our use of the safety?

predicate to uncover three additional bugs in the semantics, all
failures of the preservation property.

Bug two The second bug is an omission in the formal grammar
that leads to a bad interaction with substitution. Specifically, the
keyword make-cond was allowed to be a variable. This, by it-
self, would not lead directly to a violation of our safety property,
but it causes an error in combination with a special property of
make-cond—namely that make-cond is the only construct in the
model that uses strings. It is used to construct values that repre-
sent error conditions. Its argument is a string describing the error
condition.

Here is an example term that illustrates the bug.
(store () ((λ (make-cond) (make-cond ""))

null)))

According to the grammar of R6RS, this is a legal expression
because the make-cond in the parameter list of the λ expression
is treated as a variable, but the make-cond in the body of the
λ expression is treated as the keyword, and thus the string is in
an illegal position. After a single step, however, we are left with
this term (store () (null "")) and now the string no longer
follows make-cond, which is illegal.

The fix is simply to disallow make-cond as a variable, making
the original expression illegal.

Bug three The next bug triggers a Scheme-level error when using
the substitution metafunction. When a substitution encounters a λ
expression with a repeated parameter, it fails. For example, supply-
ing this expression
(store () ((λ (x) (λ (x x) x))

32 Scheme and Functional Programming, 2009

store

lambda

make-cond

make-cond

""

null

p*

(store (sf ...) es)

 p*

sf ...

(es es ...)

 es

(lambda f es es ...)

 es

es es ...

 es ...

(x ...)

 f

nonproc

 es es ...

x x ...

 x ...

(make-cond string)

 nonproc

make-cond

 x x ...

""

 string

nonproc

 es es ...

null

 nonproc

Figure 5. Smallest example of bug two, as a binary tree (left) and
as an R6RS expression (right)

1))

to the safety? predicate results in this error:
r6rs-subst-one: clause 3 matched
(r6rs-subst-one (x 1 (lambda (x x) x)))
2 different ways

The error indicates that the metafunction r6rs-subst-one, one
of the substitution helper functions from the semantics, is not well-
defined for this input.

According to the grammar given in the informal portion of the
R6RS, this program state is not well-formed, since the names bound
by the inner λ expression are not distinct. Thus, the fix is not to the
metafunction, but to the grammar of the language, restricting the
parameter lists of λ expressions to variables that are all distinct.

One could also find this bug by testing the metafunction
r6rs-subst-one directly. Specifically, testing that the metafunc-
tion is well-defined on its input domain also reveals this bug.

Bug four The final bug actually is an error in the definition of the
substitution function. The expression
(store () ((λ (x) (letrec ([x 1]) 1))

1))

reduces to this (bogus) expression:
(store () ((λ () (letrec ((3 1)) 2))))

That is, the substitution function replaced the x in the binding posi-
tion of the letrec as if the letrec-binder was actually a reference
to the variable. Ultimately the problem is that r6rs-subst-one
lacked the cases that handle substitution into letrec and letrec∗
expressions.

Redex did not discover this bug until we supplied the #:source
keyword, which prompted it to generate many expressions match-
ing the left-hand side of the "6appN" rule described in section 4.1,
on page 31.

4.4 Status of fixes
The version of the R6RS semantics used in this exploration does
not match the official version at http://www.r6rs.org, due to
version skew of Redex. Specifically, the semantics was written for
an older version of Redex and redex-check was not present in

Uniform, R6RS R6RS R6RS
S-expression one var, one var, keywords

B
ug

#

grammar no dups with dups as vars

1 D1(6) > 228
p∗(3) > 211

2 D0(9) > 2211
p∗k(6) ≈ 2556

3 D1(11) > 2213
p∗d(8) > 22,969

mf (5) > 2501

4 D1(12) > 2214
p∗(5) > 2110

Figure 6. Exhaustive search space sizes for the four bugs

that version. Thus, in order to test the model, we first ported it to
the latest version of Redex. We have verified that all four of the
bugs are present in the original model, and we used redex-check
to be sure that every concrete term in the ported model is also in
the original model (the reverse is not true; see the discussion of bug
three).

Finally, the R6RS is going to appear as book published by
Cambridge Press [20] and the fixes listed here will be included.

4.5 Search space sizes
Although all four of the bugs in section 4.3 can be discovered with
fairly small examples, the search space corresponding to the bug
can still be fairly large. In this section we attempt to quantify the
size of that search space.

The simplest way to measure the search space is to consider
the terms as if they were drawn from an uniform, s-expression
representation, i.e., each term is either a pair of terms or a symbol,
using repeated pairs to form lists. As an example, consider the
left-hand side of figure 5. It shows the parse tree for the smallest
expression that discovers bug two, where the dots with children are
the pair nodes and the dots without children are the list terminators.

The Dx function computes the number of such trees at a given
depth (or smaller), where there are x variables in the expression.

Dx(0) = 61 + 1 + x
Dx(n) = 61 + 1 + x + Dx(n− 1)2

The 61 in the definition is the number of keywords in the R6RS
grammar, which just count as leaf nodes for this function; the 1
accounts for the list terminator. For example, the parse tree for bug
two has depth 9, and there are more than 2211

other trees with that
depth (or smaller).

Of course, using that grammar can lead to a much larger state
space than necessary, since it contains nonsense expressions like
((λ) (λ) (λ)). To do a more accurate count, we should deter-
mine the depth of each of these terms when viewed by the actual
R6RS grammar. The right-hand side of figure 5 shows the parse
tree for bug two, but where the internal nodes represent expansions
of the non-terminals from the R6RS semantics’s grammar. In this
case, each arrow is labeled with the non-terminal being expanded,
the contents of the nodes show what the non-terminal was expanded
into, and the dot nodes correspond to expansions of ellipses that ter-
minate the sequence being expanded.

We have computed the size of the search space needed for each
of the bugs, as shown in figure 6. The first column shows the size of
the search space under the uniform grammar. The second column
shows the search space for the first and fourth bugs, using a variant
of the R6RS grammar that contains only a single variable and does
not allow duplicate variables, i.e., it assumes that bug three has
already been fixed, which makes the search space smaller. Still,
the search space is fairly large and the function governing its size
is complex, just like the R6RS grammar itself. The function is
shown in figure 7, along with the helper functions it uses. Each

Scheme and Functional Programming, 2009 33

function computes the size of the search space for one of the non-
terminals in the grammar. Because p∗ is the top-level non-terminal,
the function p∗ computes the total size.

Of course it does not make sense to use that grammar to measure
the search space for bug three, since it required duplicate variables.
Accordingly we used a slightly different grammar to account for it,
as shown in the third column in figure 6. The size function we used,
p∗d, has a subscript d to indicate that it allows duplicate variables and
otherwise has a similar structure to the one given in figure 7.

Bug three is also possible to discover by testing the metafunc-
tion directly, as discussed in section 4.3. In that case, the search
space is given by the mf function which computes the size of the
patterns used for r6rs-subst-one’s domain. Under that metric,
the height of the smallest example that exposes the bug is 5. This
corresponds to testing a different property, but would still find the
bug, in a much smaller search space.

Finally, our approximation to the search space size for bug two
is shown in the rightmost column. The k subscript indicates that
variables are drawn from the entire set of keywords. Counting this
space precisely is more complex than the other functions, because
of the restriction that variables appearing in a parameter list must
be distinct. Indeed, our p∗k function over-counts the number of terms
in that search space for that reason.3

5. Effective Random Term Generation
At a high level, Redex’s procedure for generating a random term
matching a given pattern is simple: for each non-terminal in the
pattern, choose one of its productions and proceed recursively on
that pattern. Of course, picking naively has a number of obvious
shortcomings. This sections describes how we made the random-
ized test generation effective in practice.

5.1 Choosing Productions
As sketched above, this procedure has a serious limitation: with
non-negligible probability, it produces enormous terms for many
inductively defined non-terminals. For example, consider the fol-
lowing language of binary trees:

(define-language binary-trees
(t nil

(t t)))

Each failure to choose the production nil expands the problem
to the production of two binary trees. If productions are chosen
uniformly at random, this procedure will easily construct a tree
that exhausts available memory. Accordingly, we impose a size
bound on the trees as we generate them. Each time Redex chooses
a production that requires further expansion of non-terminals, it
decrements the bound. When the bound reaches zero, Redex’s
restricts its choice to those productions that generate minimum
height expressions.

For example, consider generating a term from the e non-
terminal in the grammar L from section 2, on page 27. If the bound
is non-zero, Redex freely chooses from all of the productions. Once
it reaches zero, Redex no longer chooses the first two productions
because those require further expansion of the e non-terminal; in-
stead it chooses between the v and x productions. It is easy to see
why x is okay; it only generates variables. The v non-terminal is
also okay, however, because it contains the atomic production +.

In general, Redex classifies each production of each non-
terminal with a number indicating the minimum number of non-
terminal expansion required to generate an expression from the

3 Amusingly, if we had not found bug three, this would have been an
accurate count.

p∗(0) = 1 p∗(n + 1) = (es(n) ∗ sfs(n)) + v(n) + 1
ês(0) = 1 ês(n + 1) = (ês(n) ∗ es(n)) + 1
λ̂(0) = 1 λ̂(n + 1) = (λ̂(n) ∗ λ(n)) + 1

Qs(0) = 1 Qs(n + 1) = (Qs(n) ∗ s(n)) + 1
ê(0) = 1 ê(n + 1) = (ê(n) ∗ e(n)) + 1
v̂(0) = 1 v̂(n + 1) = (v̂(n) ∗ v(n)) + 1
E(0) = 1 E(n + 1) = (E(n) ∗ E∗(n))

+ (E(n) ∗ Fo(n)) + 1
E∗(0) = 0 E∗(n + 1) = λ̂(n) + (e(n)2 ∗ x (n)) + F ∗(n)
F ∗(0) = 0 F ∗(n + 1) = ê(n) + (ê(n) ∗ v̂(n))

+ (ê(n) ∗ v(n)) + (ê(n) ∗ e(n) ∗ 2)
Fo(0) = 0 Fo(n + 1) = (x (n) ∗ 2) + v̂(n)2 + e(n)2

b(0) = 1 b(n + 1) = v(n) + 1
e(0) = 1 e(n + 1) = (λ̂(n) ∗ e(n))

+ (ê(n) ∗ e(n) ∗ lb(n) ∗ 2)
+ (ê(n) ∗ e(n) ∗ 3) + (e(n) ∗ x (n) ∗ 2)
+ (e(n)3 ∗ x (n)) + (x (n) ∗ 2) + e(n)3

+ nonλ(n) + λ(n) + 1
es(0) = 2 es(n + 1) = (ês(n) ∗ es(n) ∗ f (n))

+ (λ̂(n) ∗ e(n))
+ (ês(n) ∗ es(n) ∗ lbs(n) ∗ 2)
+ (ês(n) ∗ es(n) ∗ 3)
+ (es(n) ∗ x (n) ∗ 2) + (E(n) ∗ x (n)2)
+ (e(n)3 ∗ x (n)) + (x (n) ∗ 2) + es(n)3

+ nonλ(n) + pλ(n) + seq(n) + sqv(n)
+ 2

f (0) = 1 f (n + 1) = (x (n) ∗ 2) + 1
lb(0) = 1 lb(n + 1) = (e(n) ∗ x (n)) + 1

lbs(0) = 1 lbs(n + 1) = (es(n) ∗ x (n)) + 1
nonλ(0) = 2 nonλ(n + 1) = pp(n) + sqv(n) + x (n) + 2

pp(0) = 0 pp(n + 1) = x (n) ∗ 2
pλ(0) = 4 pλ(n + 1) = proc1(n) + 15
λ(0) = 0 λ(n + 1) = (ê(n) ∗ e(n) ∗ f (n))

+ (E(n) ∗ x (n)2) + pλ(n)
proc1(0) = 7 proc1(n + 1) = 9

s(0) = 1 s(n + 1) = seq(n) + sqv(n) + x (n) + 1
seq(0) = 0 seq(n + 1) = (Qs(n) ∗ s(n) ∗ sqv(n))

+ (Qs(n) ∗ s(n) ∗ x (n))
+ (Qs(n) ∗ s(n))

sf (0) = 0 sf (n + 1) = (b(n) ∗ x (n)) + (v(n)2 ∗ pp(n))
sfs(0) = 1 sfs(n + 1) = sf (n) + 1
sqv(0) = 2 sqv(n + 1) = 3

v(0) = 0 v(n + 1) = nonλ(n) + λ(n)
x (0) = 0 x (n + 1) = 1

Figure 7. Size of the search space for R6RS expressions

production. Then, when the bound reaches zero, it chooses from
one of the productions that have the smallest such number.

Although this generation technique does limit the expressions
Redex generates to be at most a constant taller than the bound, it
also results in a poor distribution of the leaf nodes. Specifically,
when Redex hits the size bound for the e non-terminal, it will
never generate a number, preferring to generate + from v. Although
Redex will generate some expressions that contain numbers, the
vast majority of leaf nodes will be either + or a variable.

In general, the factoring of the grammar’s productions into non-
terminals can have a tremendous effect on the distribution of ran-
domly generated terms because the collection of several produc-
tions behind a new non-terminal focuses probability on the origi-
nal non-terminal’s other productions. We have not, however, been
able to detect a case where Redex’s poor distribution of leaf nodes
impedes its ability to find bugs, despite several attempts. Neverthe-
less, such situations probably do exist, and so we are investigating
a technique that produces better distributed leaves.

34 Scheme and Functional Programming, 2009

5.2 Non-linear patterns
Redex supports patterns that only match when two parts of the term
are syntactically identical. For example, this revision of the binary
tree grammar only matches perfect binary trees
(define-language perfect-binary-trees

(t nil
(t 1 t 1)))

because the subscripts in the second production insists that the two
sub-trees are identical. Additionally, Redex allows subscripts on
the ellipses (as we used in section 3 on page 29) indicating that the
length of the matches must be the same.

These two features can interact in subtle ways that affect term
generation. For example, consider the following pattern:
(x 1 ... y ... 2 x 1 ... 2)

This matches a sequence of xs, followed by a sequence of ys
followed by a second sequence of xs. The 1 subscripts dictate that
the xs must be the same (when viewed as a complete sequence—
the individual members of each sequence may be distinct) and the
2 subscripts dictate that the number of ys must be the same as the

number of xs. Taken together, this means that the length of the first
sequence of x’s must be the same as the length of the sequence of
ys, but an left-to-right generation of the term will not discover this
constraint until after it has already finished generating the ys.

Even worse, Redex supports subscripts with exclamation marks
which insist same-named subscripts match different terms; e.g.
(x ! 1 x ! 1) matches sequences of length two where the ele-
ments are different.

To support this in the random test case generator, Redex prepro-
cesses the term to normalize the underscores. In the pattern above,
Redex rewrites the pattern to this one
(x 1 ... 2 y ... 2 x 1 ... 2)

simply changing the first ellipsis to ... 2.

5.3 Generation Heuristics
Typically, random test case generators can produce very large test
inputs for bugs that could also have been discovered with small
inputs.4 To help mitigate this problem, the term generator employs
several heuristics to gradually increase the size and complexity of
the terms it produces (this is why the generator generally found
small examples for the bugs in section 3).

• The term-height bound increases with the logarithm of the
number of terms generated.

• The generator chooses the lengths of ellipsis-produced se-
quences and the lengths of variable names using a geometric
distribution, increasing the distribution’s expected value with
the logarithm of the number of attempts.

• The alphabet from which the generator constructs variable
names gradually grows from the English alphabet to the ASCII
set and then to the entire unicode character set. Eventually the
generator explicitly considers choosing the names of the lan-
guage’s terminals as variables, in hopes of catching rules which
confuse the two. The R6RS semantics makes such a mistake, as
discussed in section 4.3 (page 4.3), but discovering it is difficult
with this heuristic.

• When generating a number, the generator chooses first from the
naturals, then from the integers, the reals, and finally the com-
plex numbers, while also increasing the expected magnitude of
the chosen number. The complex numbers tend to be especially

4 Indeed, for this reason, QuickCheck supports a form of automatic test case
simplification that tries to shrink a failing test case.

interesting because comparison operators such as <= are not de-
fined on complex numbers.

• Eventually, the generator biases its production choices by ran-
domly selecting a preferred production for each non-terminal.
Once the generator decides to bias itself towards a particular
production, it generates terms with more deeply nested version
of that production, in hope of catching a bug with deeply nested
occurrences of some construct.

6. Related Work
Our work was inspired by QuickCheck [5], a tool for doing ran-
dom test case generation in Haskell. Unlike QuickCheck, how-
ever, Redex’s test case generation goes to some pains to gener-
ate tests automatically, rather than asking the user to specify test
case generators. This choice reduces the overhead in using Re-
dex’s test case generation, but generators for tests cases with a
particular property (e.g., closed expressions) still requires user in-
tervention. QuickCheck also supports automatic test case simpli-
fication, a feature not yet provided in Redex. Our work is not
the only follow-up to QuickCheck; there are several systems in
Haskell [3, 19], Clean [11], and even one for the ACL2 integration
with PLT Scheme [14].

There are a number of other tools that test formal semantics.
Berghofer and Nipkow [1] have applied random testing to seman-
tics written in Isabelle, with the goal of discovering shallow errors
in the language’s semantics before embarking on a time-consuming
proof attempt. αProlog [2] and Twelf [16] both support Prolog-
like search for counterexamples to claims. Most recently, Rober-
son et al. [17] developed a series of techniques to shrink the search
space when searching for counterexamples to type soundness re-
sults, with impressive results. Rosu et al. [18] use a rewriting logic
semantics for C to test memory safety of individual programs.

There is an ongoing debate in the testing community as to the
relative merits of randomized testing and bounded exhaustive test-
ing, with the a priori conclusion that randomized testing requires
less work to apply, but that bounded exhaustive testing is otherwise
superior. Indeed, while most papers on bounded exhaustive test-
ing include a nominal section on the relative merits of randomized
testing (typically showing it to be far inferior), there are also few,
more careful, studies that do show the virtues of randomized test-
ing. Visser et al. [23] conducted a case study that concludes (among
other things) that randomized testing generally does well, but falls
down when testing complex data structures like Fibonacci heaps.
Randomized testing in Redex mitigates this somewhat, due to the
way programs are written in Redex. Specifically, if such heaps were
coded up in Redex, there would be one rule for each different con-
figuration of the heap, enabling Redex to easily generate test cases
that would cover all of the interesting configurations. Of course,
this does not work in general, due to side-conditions on rules. For
example, we were unable to automatically generate many tests for
the rule [6applyce]5 in the R6RS formal semantics, due to its side-
condition. Ciupa et al. [4] conducted another study that finds ran-
domized testing to be reasonably effective, and Groce et al. [10]
conducted a study finding that random test case generation is espe-
cially effective early in the software’s lifecycle.

7. Conclusion and Future Work
Randomized test generation has proven to be a cheap and effective
way to improve models of programming languages in Redex. With
only a 13-line predicate (plus a 29-line free variables function), we
were able to find bugs in one of the biggest, most well-tested (even

5 The is the third rule in figure 11: http://www.r6rs.org/final/html/
r6rs/r6rs-Z-H-15.html#node_sec_A.9

Scheme and Functional Programming, 2009 35

community-reviewed), mechanized models of a programming lan-
guage in existence.

Still, we realize that there are some models for which these sim-
ple techniques are insufficient, so we don’t expect this to be the last
word on testing such models. We have begun work to extend Re-
dex’s testing support to allow the user to have enough control over
the generation of random expressions to ensure minimal properties,
e.g. the absence of free variables.

Our plan is to continue to explore how to generate programs
that have interesting structural properties, especially well-typed
programs. Generating well-typed programs that have interesting
distributions is particularly challenging. While it is not too difficult
to generate well-typed terms, generating interesting sets of well-
typed terms is tricky since there is a lot of freedom in the choice
of the generation of types for intermediate program variables, and
using those variables in interesting ways is non-trivial.

Acknowledgments Thanks to Matthias Felleisen for his com-
ments on an earlier draft of this paper and to Sam Tobin-Hochstadt
for feedback on redex-check .

References
[1] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In

Proceedings of the International Conference on Software Engineering
and Formal Methods, pages 230–239, 2004.

[2] J. Cheney and A. Momigliano. Mechanized metatheory model-
checking. In Proceedings of the ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming,
pages 75–86, 2007.

[3] J. Christiansen and S. Fischer. Easycheck – test data for free. In
Proceedings of the International Symposium on Functional and Logic
Programming, pages 322–336, 2008.

[4] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental
assessment of random testing for object-oriented software. In
Proceedings of the International Symposium on Software Testing
and Analysis, pages 84–94, 2007.

[5] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming,
pages 268–279, 2000.

[6] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques and
applications. Available on: http://www.grappa.univ-lille3.
fr/tata, 2007. Release October, 12th 2007.

[7] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. MIT Press, 2009.

[8] R. B. Findler. Redex: Debugging operational semantics. Reference
Manual PLT-TR2009-redex-v4.2, PLT Scheme Inc., June 2009.
http://plt-scheme.org/techreports/.

[9] E. R. Gansner and S. C. North. An open graph visualization system
and its applications. Software Practice and Experience, 30:1203–
1233, 1999.

[10] A. Groce, G. Holzmann, and R. Joshi. Randomized differential testing
as a prelude to formal verification. In Proceedings of the ACM/IEEE
International Conference on Software Engineering, pages 621–631,
2007.

[11] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast:
Generic automated software testing. In Proceedings of the Interna-
tional Workshop on the Implementation of Functional Languages,
pages 84–100, 2003.

[12] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A visual envi-
ronment for developing context-sensitive term rewriting systems. In
International Conference on Rewriting Techniques and Applications,
pages 301–312, 2004.

[13] M. Norrish and K. Slind. Hol4, 2007. http://hol.sourceforge.
net/.

[14] R. Page, C. Eastlund, and M. Felleisen. Functional programming
and theorem proving for undergraduates: a progress report. In
Proceedings of the International Workshop on Functional and
Declarative Programming in Education, pages 21–30, 2008.

[15] L. C. Paulson and T. Nipkow. Isabelle. http://isabelle.in.
tum.de/, 2005.

[16] F. Pfenning and C. Schürmann. Twelf user’s guide. Technical Report
CMU-CS-98-173, Carnegie Mellon University, 1998.

[17] M. Roberson, M. Harries, P. T. Darga, and C. Boyapati. Efficient
software model checking of soundness of type systems. In
Proceedings of the ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications, pages 493–504,
2008.

[18] G. Rosu, W. Schulte, and T. F. Serbanuta. Runtime verification of
c memory safety. In Proceedings of the International Workshop on
Runtime Verification, 2009. to appear.

[19] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy
smallcheck: automatic exhaustive testing for small values. In
Proceedings of the ACM SIGPLAN Symposium on Haskell, pages
37–48, 2008.

[20] M. Sperber, editor. Revised6 report on the algorithmic language
Scheme. Cambridge University Press, 2009. to appear.

[21] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten (editors).
The Revised6 Report on the Algorithmic Language Scheme.
http://www.r6rs.org/, 2007.

[22] The Coq Development Team. The Coq proof assistant reference
manual, version 8.0. http://coq.inria.fr/, 2004–2006.

[23] W. Visser, C. S. Pǎsǎreanu, and R. Pelánek. Test input generation
for java containers using state matching. In Proceedings of the
International Symposium on Software Testing and Analysis, pages
37–48, 2006.

36 Scheme and Functional Programming, 2009

A pattern matcher for miniKanren
or

How to get into trouble with CPS macros

Andrew W. Keep Michael D. Adams Lindsey Kuper William E. Byrd Daniel P. Friedman
Indiana University, Bloomington, IN 47405

{akeep,adamsmd,lkuper,webyrd,dfried}@cs.indiana.edu

Abstract
CPS macros written using Scheme’s syntax-rules macro system
allow for guaranteed composition of macros and control over
the order of macro expansion. We identify a limitation of CPS
macros when used to generate bindings from a non-unique list
of user-specified identifiers. Implementing a pattern matcher for
the miniKanren relational programming language revealed this
limitation. Identifiers come from the pattern, and repetition in-
dicates that the same variable binding should be used. Using a
CPS macro, binding is delayed until after the comparisons are
performed. This may cause free identifiers that are symbolically
equal to be conflated, even when they are introduced by differ-
ent parts of the source program. After expansion, this leaves some
identifiers unbound that should be bound. In our first solution, we
use syntax-case with bound-identifier=? to correctly compare the
delayed bindings. Our second solution uses eager binding with
syntax-rules. This requires abandoning the CPS approach when
discovering new identifiers.

1. Introduction
Macros written in continuation-passing style (CPS) [4, 6] give the
programmer control over the order of macro expansion. We chose
the CPS approach for implementing a pattern matcher for miniKan-
ren, a declarative logic programming language implemented in a
pure functional subset of Scheme [1, 3]. This approach allows us
to generate clean miniKanren code, keeping bindings for logic vari-
ables in as narrow a scope as possible without generating additional
binding forms. During the expansion process, the pattern matcher
maintains a list of user-specified identifiers we have encountered,
along with the locations in which bindings should be created for
them. We accomplish this by using a macro to compare an identi-
fier with the elements of one or more lists of identifiers. Each clause
in the macro contains an associated continuation that is expanded
if a match is found. The macro can then determine when a unifica-
tion is unnecessary, when an identifier is already bound, or when
an identifier requires a new binding.

While CPS and conditional expansion seemed, at first, to be
an effective technique for implementing the pattern matcher, we

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

discovered that the combination of delayed binding of identifiers
and conditional expansion based on these identifiers could cause
free variables that are symbolically equal to be conflated, even
when they are generated from different positions in the source code.
The result of conflating two or more identifiers is that only the
first will receive a binding. This leaves the remaining identifiers
unbound in the final expression, resulting in unbound variable
errors.

This issue with delaying identifier binding while the CPS
macros expand suggests that some care must be taken when writing
macros in CPS. In particular, CPS macros written using Scheme’s
syntax-rules macro system are limited in their ability to compare
two identifiers and conditionally expand based on the result of the
comparison. The only comparison available to us under syntax-
rules is an auxiliary keyword check that is the operational equiv-
alent of syntax-case’s free-identifier=? predicate. Unfortunately,
when we use such a comparison, identifiers that are free and sym-
bolically equal may be incorrectly understood as being lexically
the same.

In our implementation, the pattern matcher exposes its func-
tionality to the programmer through the λe and matche forms.
We begin by describing the semantics of λe and matche and giv-
ing examples of their use in miniKanren programs in section 2. In
section 3, we present our original implementation of the pattern
matcher, and in section 4 we demonstrate how the issue regarding
variable binding can be exposed. We follow up in section 5 by pre-
senting two solutions to the variable-binding issue, the first using
syntax-case and the second using eager binding with syntax-rules.

2. Using λe and matche

Our aim in implementing a pattern matcher was to allow automatic
variable creation similar to that found in the Prolog family of logic
programming languages. In Prolog, the first appearance of a vari-
able in the definition of a logic rule leads to a new logic variable be-
ing created in the global environment. The λe and matche macros
described below allow the miniKanren programmer to take advan-
tage of the power and concision of Prolog-style pattern matching
with automatic variable creation, without changing the semantics
of the language.

2.1 Writing the append relation with λe

Before describing λe and matche in detail, we motivate our discus-
sion of pattern matching by looking at a common operation in log-
ical and functional programming languages—appending two lists.
In Prolog, the definition of append is very concise:

37

append ([] , Y,Y) .
append ([A |D] , Y2 , [A |R]) :− append (D, Y2 , R) .

We first present a version of append in miniKanren without
using λe or matche. Without pattern matching, the append relation
in miniKanren is surprisingly verbose when compared with the
Prolog equivalent:

(define append
(λ (x y z)

(conde

((≡ ‘() x) (≡ y z))
((exist (a d r)

(≡ ‘(,a . ,d) x)
(≡ ‘(,a . ,r) z)
(append d y r))))))

Using λe, the miniKanren version can be expressed almost as
succinctly as the Prolog equivalent:

(define append
(λe (x y z)

((() ,y))
(((,a . ,d) (,a . ,r)) (append d y r))))

The two match clauses of the λe version of append correspond
to the two rules in the Prolog version. In the first match clause, x is
unified with () and z with y. In the second clause, x is unified with a
pair that has a as its car and d as its cdr, and z is unified with a pair
that has the same a as its car and a fresh r as its cdr. The append
relation is then called recursively to finish the work.

No new variables need be created in the first clause, since the
only variable referenced, y, is already in the λe formals list. In the
second clause, λe is responsible for creating bindings for a, d, and
r. In both clauses, the double underscore indicates a position in
the match that has a value we do not care about. No unification
is needed here, since no matter what value y has, it will always
succeed and need not extend the variable environment. We also
have the option of using ,y instead of because λe recognizes
a variable being matched against itself and avoids generating the
unnecessary unification.

With the append relation defined we can now use miniKanren’s
run interface to test the relation.

(run 1 (t) (append ’(a b c) ’(d e f) t))⇒
((a b c d e f))

where 1 indicates only one answer is desired and t is the logic
variable bound to the result. Because append is a relation we can
also use it to generate the input lists that would give us (a b c d e f).

(run 5 (t)
(exist (x y)

(append x y ‘(a b c d e f))
(≡ ‘(,x ,y) t)))⇒

((() (a b c d e f))
((a) (b c d e f))
((a b) (c d e f))
((a b c) (d e f))
((a b c d) (e f)))

where 5 indicates five answers are desired and x and y are unin-
stantiated variables used to represent the first and second lists. ap-
pend then returns the first five possible input list pairs that when
appended yield (a b c d e f).

2.2 Syntax and semantics of λe

Having seen λe in action, we now formally describe its syntax and
semantics. The syntax of a λe expression is:

(λe formals
(pattern1 goal1 . . .)
(pattern2 goal2 . . .)
. . .)

where formals may be any valid λ formal arguments expression,
including those for variable-length argument lists. formals is the
expression to be matched against in the match clauses that follow.
Each match clause begins with a pattern followed by zero or more
user-supplied goals. The pattern and user-supplied goals represent
a conjunction of goals that must all be met for the clause to succeed.
Taken together, the clauses represent a disjunction and expand into
the clauses of a miniKanren conde (disjunction) expression [3],
hence the name λe. The pattern within each clause is then further
expanded into a set of variable bindings using miniKanren’s exist
and unification operators as necessary.

If no additional goals are supplied by the programmer, then the
unifications generated by the pattern will comprise the body of the
generated conde clause. Otherwise, the user-supplied goals will
be evaluated in the scope of the variables created by the pattern.
The first match clause of append requires no user-supplied goal,
while the second clause uses a user-supplied goal to provide the
recursion. It is important to note that λe does not attempt to identify
unbound identifiers in user-supplied goals, only those in the pattern.
Any variables needed in the user-supplied goals not named in the
formals list or pattern will need to be bound with an exist explicitly
by the user.

The pattern matcher recognizes the following forms:

() The null list.
Similar to Scheme’s , the double underscore represents a
position where an expression is expected, but its value can be
ignored.

,x A logic variable x. If this is the first appearance of x in the pattern
and it does not appear in the formals list of λe, a new logic
variable will be created.

’e Preserves the expression e. This is provided as an escape for
special forms where the exact contents should be preserved. For
example, if we wish to match the symbol rather than having it
be treated as an ignored position, we could use ’ in our pattern.
λe would then know to override the special meaning of .

sym Where sym is any Scheme symbol, other then those assigned
special meaning, such as . These will be preserved in the
unification as Scheme symbols.

(a . d) Arbitrarily nested pairs and lists are also allowed, where a
and d are stand-ins for the car and cdr positions of the pair. This
also allows us to create arbitrary list structures, as is normally
the case with pairs in Scheme.

When processing the pattern for each clause, λe breaks the
pattern down into parts which correspond to the members of the
formals list. The list of parts is then processed from left to right,
with formals as the initial list of known variables. As λe encounters
fresh variable references in each part, it adds them to the known-
variables list. If a part is , or if it is the variable appearing in
the corresponding position in formals, no unification is necessary.
Otherwise, a unification between the processed pattern and the
appropriate formals variable will be generated.

2.3 Syntax and semantics of matche

matche is similar to λe in syntax, and it recognizes the same pat-
terns. Unlike λe, however, there is no formals list, so the list of
known variables starts out effectively empty. Strictly speaking, the
known-variables list contains the temporary variable introduced to
bind the expression in matche, which simplifies the implementa-
tion of matche by making it possible to use the same helper macros

38 Scheme and Functional Programming, 2009

as λe. However, since this temporary variable is introduced by a let
expression generated by matche, hygiene ensures that it will never
inadvertently match a variable named in the pattern.

matche has the following syntax:

(matche expr
(pattern1 goal1 . . .)
(pattern2 goal2 . . .)
. . .)

where expr is any Scheme expression. Similar to other pattern
matchers, matche let-binds expr to a temporary variable to ensure
it is only computed once. Unlike λe, which may generate multiple
unifications for each clause, matche only generates one unification
per clause, since it matches each pattern with the variable bound to
expr as a whole.

Since matche can be used on arbitrary expressions, it provides
more flexibility then λe in defining the matches. For instance,
we may want to define the append relation using only one of the
formal arguments in the match. Consider the following definition
of append.

(define append
(λ (x y z)

(matche x
(() (≡ y z))
((,a . ,d)
(exist (r)

(≡ ‘(,a . ,r) z)
(append d y r))))))

Here we have chosen to match against only the first list in the
relation, supplying the unifications necessary for the other formal
variables. The first clause matches x to () and unifies y and z. The
second clause decomposes the list in x into a and d, then uses exist
to bind r and unifies ‘(,a . ,r) with z. Finally it recurs on the append
relation to finish calculating the appended lists. This clause requires
an explicit exist be used to bind r since it is not a formal or pattern
variable.

The implementations of λe and matche were designed for use
in R5RS, but can be ported to an R6RS library with relative ease,
as long as care is taken to ensure that the auxiliary keyword is
exported with the library.

3. Implementation
Our primary objective in adding pattern-matching capability to
miniKanren is to provide convenience to the programmer, but we
would prefer that convenience not come at the expense of effi-
ciency. Indeed, we would like to generate the cleanest correct pro-
grams possible, so that we can get good performance from the re-
sults of our macros.

Since relational programming languages like miniKanren return
all possible results from a relation, we would like goals that will
eventually reach failure to do so as quickly as possible. In keeping
with this “fail fast” principle, we follow two guidelines. First, we
limit the scope of logic variables as much as possible. While in-
troducing new logic variables is not an especially time-consuming
process, we would still prefer to avoid creating logic variables we
will not be using. Second, we generate as few exist forms as pos-
sible. Minimizing the number of exist forms in the code gener-
ated by λe and matche aids efficiency. exist wraps its body in two
functions. The first is a monadic transform to thread miniKanren’s
substitution through the goals in its body. The second generates a
thunk to allow miniKanren’s interleaving search to work through
the goals appropriately. This means that each exist may cause mul-
tiple closures to be generated, and we would like to keep these to a
minimum.

To illustrate the benefit of keeping the scope of logic variables
as tight as possible, consider the following example:

(exist (x y z) (≡ ‘(,x . ,y) ‘(a . b)) (≡ x y) (≡ z ‘c))

Here, we create bindings for x, y, and z, even though z will never
be used. (≡ x y) will fail since (≡ ‘(,x . ,y) ‘(a . b)) binds x to a and y
to b, so z is never encountered. However, we can tighten the lexical
scope for z as follows:

(exist (x y) (≡ ‘(,x . ,y) ‘(a . b)) (≡ x y) (exist (z) (≡ z ‘c)))

The narrower scope around z helps the exist clauses to fail more
quickly, cutting off miniKanren’s search for solutions. This exam-
ple illustrates the trade-off inherent in our twin goals of keeping
each variable’s scope as narrow as possible and minimizing the
overall number of exist clauses. Our policy has been to allow more
exist clauses to be generated when it will tighten the scope of vari-
ables. As we continue to explore various performance optimiza-
tions in miniKanren, the pattern matcher could benefit from more
detailed investigation to determine if the narrowest-scope-possible
policy wins more often then it loses.

3.1 λe and matche

All three of our implementations for the pattern matcher expose
their functionality to the programmer via the λe and matche

macros. λe and matche are implemented as follows:

(define-syntax λe

(syntax-rules ()
((args c c∗ . . .)
(λ args (handle-clauses args (c c∗ . . .))))))

(define-syntax matche

(syntax-rules ()
((e c c∗ . . .)
(let ((t e)) (handle-clauses t (c c∗ . . .))))))

The interface to these two macros is shared by all three imple-
mentations. In all three cases, λe and matche use the same set of
macros to implement their functionality.

In general, the CPS macro approach [4, 6] seems well-suited
for our purposes in implementing a pattern matcher in that parts
of the pattern must be reconstructed for use during unification and
bindings for variables must be generated outside these unifications.
Since the CPS macro approach gives us the ability to control the
order of expansion, we decided to take an “inside-out” approach:
clauses are processed first, and the conde form is then generated
around all processed clauses, rather than first expanding the conde

and then expanding clauses within it. This inside-out expansion al-
lows us to process patterns from left to right without needing to
worry about nesting later unifications and user-supplied goals into
the exist clauses as we go. Patterns must be processed from left to
right to ensure we are always generating an exist binding form for
the outermost occurrence of an identifier. The entire pattern of a
clause is processed, with each part of the pattern being transformed
into a unification; any variables that require bindings to be gener-
ated for them are put into a flat list of unifications in the order they
occur.

As an example, consider the λe version of the append relation
from the previous section. At expansion time, the pattern in the
second clause is processed into the following flat list of unifications
(with embedded indicators of where new variables need to be
bound):

((ex a d) (≡ (cons a d) x) (ex r) (≡ (cons a r) z))

Scheme and Functional Programming, 2009 39

Here (ex a d) and (ex r) indicate the places where new variables
need to be bound with an exist clause. The build-clause macro, de-
scribed below, then takes this list, along with user-specified goals
(if any) and a continuation, and calls the continuation on the com-
pleted clause, which looks like this after expansion:

(exist (a d)
(≡ (cons a d) x)
(exist (r)

(≡ (cons a r) z)
(append d y r)))

where The exist forms and unifications were generated as a result
of matching the pattern with the λe formals list, and (append d y
r) was the user-specified goal. When both clauses of the append re-
lation have been processed and wrapped in a single conde, append
expands to

(define append
(λ (x y z)
(conde

((≡ ’() x) (≡ y z))
((exist (a d)

(≡ (cons a d) x)
(exist (r)
(≡ (cons a r) z)
(append d y r)))))))

In this example, the first clause does not require any exist clauses,
since it does not introduce any new bindings.

3.2 CPS macro implementation
Aside from the user-interfacing λe and matche, the CPS macro
implementation of the pattern matcher comprises ten macros: two
macros for decomposing clauses and patterns; two helper macros
for constructing continuation expressions; five macros for building
up clauses, unifications, and expressions; and one macro for match-
ing identifiers to determine when bindings have been seen before.
As a guide to the reader, the macros used to decompose clauses
and patterns have names starting with handle; the helper macros
for constructing continuations have names starting with make; and
the macros used to build up discovered parts of clauses, unifica-
tions, and expressions have names starting with build. Finally, the
case-id macro is used to match identifiers in much the same way
Scheme’s case is used to match symbols. We have also endeav-
oured to use consistent naming conventions for the variables used
in the handle, make, and build macros, as follows:

a, a∗ indicate an argument (a) or list of arguments (a∗).
p, p∗, pr∗ indicate a part (p), parts (p∗), or the patterns remaining

to be processed (pr∗) from the initial pattern.
u∗, g∗, g∗∗ indicate user-supplied goals (u∗), goals from a clause

(g∗), or the remaining clauses (g∗∗).
pc∗, pp∗, pg∗ indicate a list of processed clauses (pc∗), processed

pattern parts (pp∗), and processed goals (pg∗).
k∗ indicates the continuation for the macro.
svar∗ indicates a list of variables we have already seen in process-

ing the pattern.
evar∗ indicates a list of variables that need to be bound with exist

for the unification currently being worked on.
pa, pd indicate the car (pa) and cdr (pd) positions of a pattern pair.

3.2.1 The handle macros
The handle-clauses and handle-pattern macros implement the
forward phase of pattern processing and are responsible for break-
ing the λe and matche clauses and patterns down into parts for the

build macros to reconstruct. The handle-clauses macro is imple-
mented as follows:

(define-syntax handle-clauses
(syntax-rules ()

((a∗ () . pc∗) (conde . pc∗))
(((a . a∗) (((p . p∗) . g∗) (pr∗ . g∗∗) . . .) . pc∗)
(make-clauses-cont

(a . a∗) a a∗ p p∗ g∗ ((pr∗ . g∗∗) . . .) . pc∗))
((a ((p . g∗) (pr∗ . g∗∗) . . .) . pc∗)
(make-clauses-cont a a () p () g∗ ((pr∗ . g∗∗) . . .) . pc∗))))

handle-clauses transforms the list of λe and matche clauses
into a list of conde clauses. The first rule recognizes when the list
of λe clauses to be processed is empty and generates a conde to
wrap the processed clauses pc∗. The second and third rules both
serve to decompose the clauses, processing each one in order using
the make-clauses-cont macro described below. The second rule
processes clauses of λe expressions where the formals start with
a pair. The third rule handles matche clauses where the expression
to be matched is let-bound to a temporary and λe clauses where
the formal is a single identifier rather than a list.

handle-pattern is where the main work of the pattern matcher
takes place. It is responsible for deciding when new logic variables
need to be introduced and generating the expressions to be unified
against in the final output.

(define-syntax handle-pattern
(syntax-rules (quote unquote top)

((top a (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(k∗ . . . svar∗ evar∗ pp∗ . . .))

((tag a (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(k∗ . . . (t . svar∗) (t . evar∗) pp∗ . . . t))

((tag a () (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(k∗ . . . svar∗ evar∗ pp∗ . . . ()))

((tag a (quote p) (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(k∗ . . . svar∗ evar∗ pp∗ . . . (quote p)))

((tag a (unquote p) (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(case-id p

((a) (k∗ . . . svar∗ evar∗ pp∗ . . .))
(svar∗ (k∗ . . . svar∗ evar∗ pp∗ . . . p))
(else (k∗ . . . (p . svar∗) (p . evar∗) pp∗ . . . p))))

((tag a (pa . pd) k∗ svar∗ evar∗ pp∗ . . .)
(handle-pattern inner t1 pa

(handle-pattern inner t2 pd
(build-cons k∗)) svar∗ evar∗ pp∗ . . .))

((tag a p (k∗ . . .) svar∗ evar∗ pp∗ . . .)
(k∗ . . . svar∗ evar∗ pp∗ . . . ’p))))

The first two rules both match the “ignore” pattern. However,
the first rule is distinguished by its use of the top auxiliary keyword
indicating that it is at the top level of the pattern, i.e., it will be
matched directly with an input variable, either a λe formal or let-
bound temporary variable for the matche expression. In either
case, no unification is needed, so we do not extend the list of
processed pattern parts pp∗. In the second rule, we know that
must be nested within a pair, so a new logic variable is generated to
indicate that an expression is expected here, even though we do not
care what the value of the expression is. Since the logic variable is
generated as a temporary, it will not clash with any other variable
already bound, thanks to hygienic macro expansion.

The remaining rules do not require this special handling around
the top element, and so they ignore the “tag” supplied as the first
part of the pattern. The third, fourth, and seventh rules handle
the null, quoted expression, and bare symbol cases, respectively.
In all of these cases, the continuation is invoked with either a
null list or a quoted expression. If we are at the top level of the

40 Scheme and Functional Programming, 2009

pattern, the continuation builds a unification directly using build-
goal; otherwise, it builds a more complex expression using build-
cons. The CPS nature of the macro, however, frees us from having
to concern ourselves with the kind of expression generated.

The sixth rule handles pairs. Here, handle-pattern is called on
the car of the pair, pa, with a continuation that processes the cdr
of the pair, pd, which in turn calls the build-cons continuation to
build the cons pair. The continuations are each created with the part
of the current state required for them to finish their jobs, relying
on the application sites for the continuation to fill in any extra
arguments. This is why expressions of the form (k∗ . . . args . . .)
are so prevalent in our macros. Note that in both calls to handle-
pattern, inner is specified to ensure that if is encountered, it will
recognize that it is no longer at the top level of the pattern.

Finally, the fifth rule in handle-pattern determines if a unifi-
cation can be skipped, because it is unifying a variable with itself;
if the identifier is already a bound variable; or if a new binding
is needed for this variable. case-id provides the functionality for
this conditional expansion. The first case of the case-id expression
checks to see if the formal argument a matches the pattern variable
just discovered, and skips the unification if they do. Note that if this
is not a top-level match, then a will be a temporary variable gen-
erated by the calls to handle-pattern in rule six. The second case
checks if p occurs in the list of encountered variables svar∗; if so,
it simply extends the list of pattern parts with p. If the else case is
triggered, it means that we need both a new binding for the logic
variable and a pattern for the unification. In this case p is added to
the overall list of encountered variables svar∗ as well as the list of
variables to be bound for this unification evar∗. The list of pattern
parts is also extended with p. Here svar∗ and evar∗ are kept distinct,
because svar∗ records all of the variables we have encountered in
processing this clause, while evar∗ records only those needed for
the current unification, so that the exist clause can bind the logic
variables close to their first use.

3.2.2 The make helper macros

One of our design principles in implementing the pattern matcher
was to write several smaller macros, each with one relatively simple
task to accomplish, rather than writing a few monolithic ones. This
“small pieces” approach relies on the ability to compose macros
as continuations to accomplish more complex actions. Therefore,
we often find ourselves needing to construct continuations within
continuations. The make-clauses-cont and make-pattern-cont
macros help streamline the code by factoring this continuation-
building behavior out into its own macros.

(define-syntax make-clauses-cont
(syntax-rules ()

((args a a∗ p p∗ g∗ ((pr∗ . g∗∗) . . .) . pc∗)
(handle-pattern top a p

(make-pattern-cont a a∗ p∗ ()
(build-clause g∗

(handle-clauses args ((pr∗ . g∗∗) . . .) . pc∗)))
(a . a∗) ()))))

The make-clauses-cont macro is used by handle-clauses when
we begin processing a pattern. The continuation uses handle-
pattern to match the first part of a pattern to the first part of the
formals list. In addition to handing handle-pattern the list of items
to work on, a fairly deeply nested chain of continuations is passed
along. The outermost continuation, make-pattern-cont, is used to
construct the continuations that build up a unification goal from the
results of handle-pattern. Once the unification goal is built, the
build-clause continuation is used to build the completed clause,

and finally the handle-clauses continuation is used to begin work-
ing on the remaining clauses. This computation is responsible for
driving the recursion for handle-clauses, the macro that both initi-
ates the computation and finally generates the conde expression.

(define-syntax make-pattern-cont
(syntax-rules ()

((a a∗ p∗ u∗ k∗ svar∗ evar∗ . pp∗)
(build-goal a

(build-var evar∗
(build-clause-part a∗ p∗ u∗ svar∗ k∗)) . pp∗))))

Similar to make-clauses-cont, make-pattern-cont builds a
list of nested continuations. Both make-clauses-cont and build-
clause-part use make-pattern-cont to provide a continuation for
turning the pattern built during handle-pattern into a proper uni-
fication goal. The outermost continuation, build-goal, wraps the
result in a unification with its matching formal argument, a. It is
passed a continuation of build-var that is responsible for turning
the evar∗ list into an (ex evar∗ . . .) part in the flattened list of uni-
fications. Finally, the innermost continuation, build-clause-part,
drives the recursion through handle-pattern so that the entire pat-
tern will be processed into unifications and ex indicators before the
completed list is passed off to build-clause to build the final clause.

3.2.3 The build macros

At various stages in the expansion, the build macros serve both to
build some part of the final expression from parts processed through
the handle macros, and to drive the recursion through the handle
macros to bring the expansion to completion. The build-goal macro
is responsible for generating unifications, when necessary. build-
var generates ex indicators from the evar∗ list of variables if the
list is not null. The build-clause-part macro drives the recursion
around handle-pattern to finish processing the pattern into a set of
unification goals and ex indicators. handle-pattern uses the build-
cons macro to rebuild pairs discovered in the pattern. Finally, the
build-clause macro combines the flattened list of unifications and
ex indicators with the user-supplied goals and creates a clause for
use in the final conde expression.

(define-syntax build-goal
(syntax-rules ()

((a (k∗ . . .)) (k∗ . . .))
((a (k∗ . . .) p) (k∗ . . . (≡ p a)))))

The two rules in build-goal correspond to whether handle-
pattern has supplied a pattern to it. If occurs at the top level, or
a formal matches a variable referenced in the same position in the
match pattern, handle-pattern does not create a pattern; therefore,
build-goal simply calls its continuation. Otherwise, build-goal
calls its continuation with the unification of the provided pattern
and the argument.

(define-syntax build-var
(syntax-rules ()

((() (k∗ . . .) . g∗) (k∗ g∗))
((evar∗ (k∗ . . .) . g∗) (k∗ . . . (ex . evar∗) . g∗))))

Likewise, handle-pattern may provide an empty list of discov-
ered variables to build-var. Therefore, build-var need only create
a new ex indicator if it receives a non-null list. Otherwise, build-
var simply calls its continuation on the list of goals g∗.

Scheme and Functional Programming, 2009 41

(define-syntax build-clause-part
(syntax-rules ()

((() () (u∗ . . .) svar∗ (k∗ . . .) . g∗) (k∗ . . . (u∗ g∗)))
(((a . a∗) (p . p∗) (u∗ . . .) svar∗ k∗ . g∗)
(handle-pattern top a p

(make-pattern-cont a a∗ p∗ (u∗ g∗) k∗) svar∗ ()))
((a p (u∗ . . .) svar∗ k∗ . g∗)
(handle-pattern top a p

(make-pattern-cont a () () (u∗ g∗) k∗) svar∗ ()))))

build-clause-part receives the results of build-goal and build-
var. If there are no more pattern parts to process, build-clause-part
calls its continuation. Otherwise, build-clause-part calls handle-
pattern on the next matching pattern part and argument from the
formals list.

(define-syntax build-cons
(syntax-rules ()

(((k∗ . . .) t∗ p∗ . . . pa pd)
(k∗ . . . t∗ p∗ . . . (cons pa pd)))))

handle-pattern uses build-cons to rebuild pairs that it previ-
ously decomposed. build-cons simply calls its continuation, adding
a cons expression in the final pattern to be sent to the miniKanren
unifier.

(define-syntax build-clause
(syntax-rules (ex)

((() (k∗ . . .) ()) (k∗ . . . (succeed)))
(((pg∗ . . .) (k∗ . . .) ()) (k∗ . . . (pg∗ . . .)))
(((pg∗ . . .) k∗ (g∗ . . . (ex . v∗)))
(build-clause ((exist v∗ pg∗ . . .)) k∗ (g∗ . . .)))

(((pg∗ . . .) k∗ (g∗ . . . g))
(build-clause (g pg∗ . . .) k∗ (g∗ . . .)))))

Finally, the build-clause macro constructs a clause of one or
more goals for use in the final conde expression. It processes the
flattened list of unifications and ex indicators, along with the user-
supplied goals, into a finished clause. The first rule in build-clause
handles the case where no goals are supplied and the pattern pro-
duced no unifications. In that case, build-clause simply generates a
miniKanren succeed expression, a goal that always succeeds. The
second rule terminates by calling its continuation once all of the
goals have been processed. The third rule recognizes an ex indica-
tor and generates a new exist expression wrapping all of the already
processed goals into a new goal. The exist expressions must be cre-
ated in a list, since build-clause expects a list of clauses rather than
just a single clause. Finally, in the fourth rule, any remaining goals
should be unifications or user-supplied goals requiring no further
processing and so are simply added to the list of processed goals
for the clause.

3.2.4 The case-id macro

While the macros described thus far are written for the specific
purpose of implementing the pattern matcher, the case-id macro is a
more general-purpose helper macro. case-id determines which list
of identifiers contains a match for a supplied identifier. Its syntax is
like that of Scheme’s standard case form, except that an else clause
is required. The idea is similar to syn-eq [4] in that the identifier
to be matched is treated as an auxiliary keyword in a generated
let-syntax-bound macro. However, rather than taking a single list
of identifiers to search for a match along with success and failure
continuation macros, case-id takes a list of clauses, where each
clause has a list of identifiers, and a result continuation macro, and
requires an else clause for when none of the other cases succeed.

(define-syntax case-id
(syntax-rules (else)

((x ((x∗∗ . . .) act∗) . . . (else e-act))
(letrec-syntax

((helper (syntax-rules (x else)
(((else a)) a)
(((() a) c . c∗) (helper c . c∗))
((((x . z∗) a) c . c∗) a)
((((y z∗ (.)) a) c . c∗)
(helper ((z∗ (.)) a) c . c∗)))))

(helper ((x∗∗ . . .) act∗) . . . (else e-act))))))

The macro generated by case-id determines when identifiers
match, which allows us to avoid generating a unification, or when
an identifier appears in a list of known identifiers, which indicates
that no binding needs to be created for it. The real trick here is
that the generated macro exploits the auxiliary keyword support of
syntax-rules to match an element from the list of identifiers with
the identifier to be matched. The auxiliary keyword is the identifier
in question.

The letrec-syntax-bound macro helper searches for a case
matching the original identifier x, expanding the else clause if no
match is found. The first rule matches else and expands the associ-
ated continuation macro. The second rule identifies when the end
of a list of identifiers has been encountered, and begins process-
ing the next clause. The third rule matches the originally passed
identifier and terminates by expanding the associated continuation
macro. Finally, the fourth rule strips off the first identifier from the
list, which failed to match in the previous clause, and recurs on the
remainder of the list.

4. The variable-binding problem
We have presented a CPS macro implementation of our pattern
matcher that delays creation of binding forms, allowing us to gener-
ate concise code. Unfortunately, implementing the pattern matcher
with CPS macros led us to discover a subtle issue with how case-id
determines when a variable needs to be created.

4.1 Identifier equality and binding
We can demonstrate the problem by writing a macro that expands
into a λe or matche expression. Consider the following macro,
which expands into a λe:

(define-syntax break-λe

(syntax-rules ()
((v) (λe (x y) (((,w . ,v) ,v))))))

Here break-λe expects a user-supplied identifier for use in the
generated λe expression. This simple, though admittedly contrived,
example demonstrates how a CPS macro implementation of λe and
matche that uses case-id will not create bindings for identifiers that
are free when they are symbolically equal.

To further illustrate the problem, consider some example uses
of break-λe. First, if we supply z as an argument to break-λe, it
expands as follows:

(break-λe z)⇒
(λe (x y) (((,w . ,z) ,z))) ⇒
(λ (x y)
(conde

((exist (z w)
(≡ (cons w z) x)
(≡ z y)))))

Here, λe behaves as expected; it sees both z and w as new
variables that must be bound by the generated exist expression.

42 Scheme and Functional Programming, 2009

Instead, a user of break-λe may decide to use x, which co-
incidentally happens to be one of the variables bound by the λe

generated by break-λe. In the expansion below, x1 and x2 are both
symbolically x, but represent the x supplied to break-λe and the
generated formal parameter x in the λe expression, respectively.

(break-λe x1)⇒
(λe (x2 y) (((,w . ,x1) ,x1))) ⇒
(λ (x2 y)
(conde

((exist (w x1)
(≡ (cons w x1) x2)
(≡ x1 y)))))

Here, too, identifiers are understood as unique, as we expected,
and λe creates a binding for x1.

Finally, the programmer may choose w as the variable to supply
to break-λe. In the example below, w1 represents the w introduced
by the programmer, and w2 the one introduced by the break-λe

macro. This time, the expansion does not seem to work out so well:

(break-λe w1)⇒
(λe (x y) (((,w2 . ,w1) ,w1))) ⇒
(λ (x y)
(conde

((exist (w2)
(≡ (cons w2 w1) x)
(≡ w1 y)))))

We would have liked bindings to be created for both w1 and
w2, but since both are free and symbolically equal when case-id
compares them, they are incorrectly understood as being equal.
Although no variable capture occurred and hence hygiene is pre-
served, the λe macro does not work properly in this case, because
it leaves unbound a pattern variable that should have been bound.

The issue arises as the confluence of two events. First, as we
process the pattern, we delay the creation of bindings until the
whole pattern has been processed, leaving free variables free. Sec-
ond, case-id lifts the variable we are testing into an auxiliary key-
word in the helper macro to compare it with the list of identifiers.
The comparison between x and the identifiers from each list will
succeed when both have the same binding or when both are free
and they are symbolically equal [5, 7].

In the first example, both w and z are free, but are not sym-
bolically equal. In the second example, x1 and x2 are symbolically
equal, but one is bound while the other is free, so the comparison
fails, as we would expect. It is only in the final case, where both
w identifiers are free and symbolically equal, that the problem ex-
hibits itself.

4.2 With great power comes great responsibility
As we have seen, CPS macros provide a powerful mechanism for
controlling the order of macro expansion. However, the variable-
binding problem limits our ability to use CPS macros to generate
bindings selectively based on a running list of identifiers. In order to
avoid unintentionally conflating variables, we must bind identifiers
as soon as we encounter them, rather than delaying binding until
the invocation of a final continuation.

This limitation suggests that CPS macro writers must take par-
ticular care to avoid the accidental conflation of free, symbolically-
equal identifiers that are introduced from different places in the
source. Hygienic macro expansion does not help us here, since the
problem is not inappropriate variable capture; rather, it is that vari-
ables that should be bound are left unbound. Avoiding accidental
conflation of pattern variables therefore becomes the programmer’s
responsibility.

5. Workarounds
In this section, we present two solutions to the variable-binding is-
sue demonstrated in the previous section. Our first solution uses the
syntax-case macro system and the bound-identifier=? predicate to
perform the comparison we actually intend. Second, we present a
syntax-rules-based solution using eager binding by foregoing cer-
tain uses of CPS in favor of a more traditional approach.

5.1 case-id with syntax-case and bound-identifier=?
If we restrict ourselves to CPS macros written using the syntax-
rules macro system, there is, unfortunately, no easy change we can
make that will resolve the variable-binding issue. Fundamentally,
syntax-rules only provides us with a way to perform what is
essentially a free-identifier=? check, by generating a macro that
has the identifier we wish to match as an auxiliary keyword.

However, the syntax-case macro system gives us the ability
to compare identifiers according to their intended use by employ-
ing the bound-identifier=? predicate. bound-identifier=? takes two
identifier arguments and returns #t only if a binding for one iden-
tifier would capture the other. Effectively, two identifiers will be
bound-identifier=? only if they were introduced by the same trans-
former or within the same macro [7, 2]. In fact, this is the very
comparison we would prefer for case-id.

We can implement case-id straightforwardly with syntax-case
by using bound-identifier=? in a fender, as follows:

(define-syntax case-id
(λ (exp)

(syntax-case exp (else)
((x (else e-act)) #’e-act)
((x ((y x∗ . . .) act) ((x∗∗ . . .) act∗) . . . (else e-act))
(bound-identifier=? #’x #’y)
#’act)

((x ((y x∗ . . .) act) ((x∗∗ . . .) act∗) . . . (else e-act))
#’(case-id x

((x∗ . . .) act) ((x∗∗ . . .) act∗) . . . (else e-act)))
((x (() act) ((x∗∗ . . .) act∗) . . . (else e-act))
#’(case-id x ((x∗∗ . . .) act∗) . . . (else e-act))))))

The interface to case-id remains the same, and the rest of the
pattern matcher implementation need not be changed. In this ver-
sion of case-id, the first clause matches when only the else case
is left. The second clause extracts an identifier from the list and
uses the bound-identifier=? check to compare the identifiers. If the
comparison succeeds, that case’s action is used. The third clause
extracts the identifier and throws it away to continue processing the
current list, since we have already verified in the previous clause
that x and y are not bound-identifier=?. The final clause matches
when we have exhausted the list of identifiers to be matched for the
current case, and so we proceed to the next case from the call to
case-id.

Using this implementation of case-id, when we expand the third
break-λe expression from section 2.1, we get

(break-λe w)⇒
(λe (x y) (((,w2 . ,w1) ,w1))) ⇒
(λ (x y)
(conde

((exist (w2 w1)
(≡ (cons w2 w1) x)
(≡ w1 y)))))

with both w1 and w2 being bound by the surrounding exist expres-
sion. This workaround has the advantages of producing very clean
miniKanren source and allowing us to keep most of our implemen-
tation unchanged, but it does force us to use syntax-case.

Scheme and Functional Programming, 2009 43

5.2 Using eager binding with syntax-rules
While we can fix the variable-binding issue in our pattern matcher
by implementing case-id with syntax-case, we may prefer to stick
with a syntax-rules-based implementation. syntax-rules offers us
the simplicity of pattern matching and rewriting without having
to worry about the potentially more complex syntax-case macro
system or the details of how bound-identifier=? works. Here we
present a syntax-rules solution to the variable-binding issue that
works by eagerly binding new identifiers as they are encountered.

Unlike the syntax-case solution, which resolved the issue by
performing a different kind of comparison in case-id, the eager
binding approach ensures that our list of seen variables never con-
tains free identifiers. Since we never compare two free identifiers,
we no longer need to worry that two symbolically equal identifiers
will be conflated, and the syntax-rules version of case-id can re-
main unchanged.

This approach is not without complications of its own, since λe

and matche must expand into conde and exist, which impose their
own limitations on the expressions in their clauses. The challenge
arises because conde expects a set of clauses in which each clause
is a list of one or more goals and exist expects a list of bindings
followed by one or more goals. Since the helpers for λe and
matche will expand within the context of conde and exist, they
must expand into valid goals. Part of the difficulty arises from the
fact that conde and exist perform a monadic transform, which λe

and matche must be careful not to interfere with.
Unfortunately, these restrictions mean that the eager-binding

versions of λe and matche cannot generate quite as clean miniKan-
ren code as the original CPS macro implementation. Returning to
our append example, the fixed version of λe expands to the slightly
more verbose:

(λ (x y z)
(conde

((exist () (≡ () x) (≡ y z)))
((exist (a)

(exist (d)
(exist ()

(≡ (cons a d) x)
(exist (r)

(exist ()
(≡ (cons a r) z)
(append d y r)))))))))

Here, the exist expressions that bind no variables each enclose
more than one goal. Grouping multiple goals inside an exist allows
them to appear in a position where only one goal is allowed, in
much the same way Scheme’s begin can group multiple expres-
sions into a single expression.

The break-λe macro now works correctly in all of the previ-
ously shown examples. In particular, (break-λe w) now expands
as follows:

(break-λe w)⇒
(λe (x y) (((,w2 . ,w1) ,w1))) ⇒
(λ (x y)

(conde

((exist (w2)
(exist (w1)

(exist ()
(≡ (cons w2 w1) x)
(≡ w1 y)))))))

We have taken some liberties in this example, since the exist macro
would need to be in scope in order for it to work properly, but the
full expansion of exist would needlessly complicate the example.

Even though this version of the pattern matcher uses the original
version of case-id, it now correctly identifies the two w variables as
distinct, since the binding for w2 is created by exist before the next
section of the pattern is expanded.

In order to implement the eager binding approach, we must al-
ter the part of our pattern matcher that identifies variables to be
bound. We accomplish this by refactoring handle-pattern into two
macros: do-pattern, which binds any necessary variables, and a
simplified handle-pattern, which builds the processed version of
the pattern for use in a unification. handle-pattern remains a CPS
macro and has been simplified in accordance with its reduced mis-
sion. As before, the do-pattern-opt macro prevents recognizably
unnecessary unifications from being generated.

The interface to λe and matche does not change, and handle-
clauses has been rewritten to support expanding into the conde in
place.

(define-syntax handle-clauses
(syntax-rules ()

(((a∗ . . .) (c c∗ . . .))
(conde ((do-clause (a∗ . . .) (a∗ . . .) c))

((do-clause (a∗ . . .) (a∗ . . .) c∗)) . . .))
(((a∗ r) (c c∗ . . .))
(conde ((do-clause (a∗ . . . r) (a∗ r) c))

((do-clause (a∗ . . . r) (a∗ r) c∗)) . . .))
((a (c c∗ . . .))
(conde ((do-clause (a) a c))

((do-clause (a) a c∗)) . . .))))

handle-clauses is responsible for generating the conde expres-
sion, passing first a list of named variables, then the original argu-
ment list, and finally the clause to be processed to do-clause.

(define-syntax do-clause
(syntax-rules ()

((svar∗ () (() . g∗)) (exist-helper () . g∗))
((svar∗ (a . a∗) ((p . p∗) . g∗))
(do-pattern-opt svar∗ a p a∗ p∗ . g∗))

((svar∗ a (p . g∗))
(do-pattern-opt svar∗ a p () () . g∗))))

The do-clause macro processes each formal from the argument
list with the corresponding part of the pattern, relying on do-
pattern-opt to generate the variable bindings and unifications for
each clause. Finally, it expands into the list of user-supplied goals.

(define-syntax do-pattern-opt
(syntax-rules (unquote)

((svar∗ a (unquote p) a∗ p∗ . g∗)
(case-id p

((a) (do-clause svar∗ a∗ (p∗ . g∗)))
(else (do-pattern svar∗ a ,p () ,p a∗ p∗ . g∗))))

((svar∗ a a∗ p∗ . g∗) (do-clause svar∗ a∗ (p∗ . g∗)))
((svar∗ a p a∗ p∗ . g∗)
(do-pattern svar∗ a p () p a∗ p∗ . g∗))))

While we could generate unifications for each part of the pat-
tern, we would prefer to recognize unnecessary unifications and not
generate them, as in the original implementation. do-pattern-opt
ensures that unifications are not generated when a is encountered
at the top level or when a logic variable is being matched with itself.
In all other cases, do-pattern-opt calls do-pattern, which gener-
ates the necessary exist bindings or unifications.

44 Scheme and Functional Programming, 2009

(define-syntax do-pattern
(syntax-rules (quote unquote)

((svar∗ a () () op () ())
(do-clause svar∗ ()

(() (handle-pattern op (handle-pattern-cont a) ()))))
((svar∗ a () () op a∗ p∗ . g∗)
(exist ()

(handle-pattern op (handle-pattern-cont a) ())
(do-clause svar∗ a∗ (p∗ . g∗))))

((svar∗ a (unquote p) r op a∗ p∗ . g∗)
(case-id p

(svar∗ (do-pattern svar∗ a r () op a∗ p∗ . g∗))
(else (exist (p)

(do-pattern (p . svar∗) a r () op a∗ p∗ . g∗)))))
((svar∗ a (quote p) r op a∗ p∗ . g∗)
(do-pattern svar∗ a r () op a∗ p∗ . g∗))

((svar∗ a (pa . pd) () op a∗ p∗ . g∗)
(do-pattern svar∗ a pa pd op a∗ p∗ . g∗))

((svar∗ a (pa . pd) r op a∗ p∗ . g∗)
(do-pattern svar∗ a pa (pd . r) op a∗ p∗ . g∗))

((svar∗ a p r op a∗ p∗ . g∗)
(do-pattern svar∗ a r () op a∗ p∗ . g∗))))

In do-pattern, the unquote rule uses case-id to determine if the
logic variable p has been encountered. If not, a binding is generated
and p is added to the list of known variables. The other rules are
responsible for traversing the full pattern. Some optimization is
also performed by do-pattern: it avoids generating unnecessary
succeed goals by recognizing when it has reached the end of the
pattern and there are no user-supplied goals, in which case it treats
the final pattern unification as if it were a user-supplied goal.

Once bindings for all new variables have been created, the
original pattern is passed off to handle-pattern, and the rest of
the pattern and formal parameters are passed back to the do-clause
macro to continue processing.

(define-syntax handle-pattern
(syntax-rules (quote unquote)

((() (k∗ . . .) t∗ p∗ . . .) (k∗ . . . t∗ p∗ . . . ’()))
(((k∗ . . .) t∗ p∗ . . .) (k∗ . . . (t . t∗) p∗ . . . t))
(((unquote p) (k∗ . . .) t∗ p∗ . . .) (k∗ . . . t∗ p∗ . . . p))
(((quote p) (k∗ . . .) t∗ p∗ . . .) (k∗ . . . t∗ p∗ . . . ’p))
(((pa . pd) k t∗ p∗ . . .)
(handle-pattern pa

(handle-pattern pd (build-cons k)) t∗ p∗ . . .))
((p (k∗ . . .) t∗ p∗ . . .) (k∗ . . . t∗ p∗ . . . ’p))))

The revised handle-pattern macro no longer needs to know
about the argument being processed, nor does it need to know
whether it is called at the top level of a pattern or within a pattern, so
the first two arguments have been removed, simplifying the macro
quite a bit. However, handle-pattern still needs a continuation,
since it proceeds recursively through the pattern.

handle-pattern also adds new bindings for the temporary vari-
ables needed by the matches. This is safe because we will always
need these temporary variables and because we no longer use case-
id to guide our decisions about which variables need to be bound.
The sixth rule of handle-pattern, previously the seventh rule, still
uses build-cons in order to reconstruct a matched pair.

In addition to the updated handle-pattern, we need a new
continuation for it to call, handle-pattern-cont.

(define-syntax handle-pattern-cont
(syntax-rules ()

((v t∗ p) (exist-helper t∗ (≡ p v)))))

handle-pattern-cont simply generates a unification, wrapping
it with an exist for any temporaries that need to be bound. Rather
than a standard exist expression, we use the following exist-helper
in order to avoid generating unnecessary exist expressions when
possible:

(define-syntax exist-helper
(syntax-rules ()

((()) succeed)
((() g) g)
((t∗ g∗ . . .) (exist t∗ g∗ . . .))))

exist-helper generates the succeed goal when supplied an
empty bindings list and no goals, or the provided goal when sup-
plied an empty bindings list and a single goal. Otherwise, it gener-
ates a normal exist expression.

6. Conclusion
CPS macros provide a powerful mechanism for controlling the or-
der of macro expansion, but care must be taken when using this
technique with conditional expansion. In particular, we must use
caution when using syntax-rules with the auxiliary keyword trick
to perform variable comparisons, or we may end up treating two
free identifiers that are symbolically equal as the same, even if they
will not be equal when they are bound. However, we can work
around this limitation either by using syntax-case for performing
the comparisons with bound-identifier=?, or by using eager bind-
ing to ensure that no two free variables will ever be compared. We
hope that these techniques will prove useful for macro implemen-
tors who find themselves faced with a similar issue in using CPS
macros. An interesting area of further investigation in this regard
would be to look at ways to bring the ability to perform bound-
identifier=? comparisons to syntax-rules. Already some imple-
mentations of syntax-rules, such as the one included with Chez
Scheme [2], provide a fender syntax similar to that of syntax-case
which allows the use of such techniques, although this has not yet
found its way into the standard.

Acknowledgments
The authors wish to express their thanks to the anonymous review-
ers, whose thoughtful comments and suggestions have improved
this paper. We thank Dorai Sitaram for SLATEX, which we use to
typeset our programs.

References
[1] W. E. Byrd and D. P. Friedman. From variadic functions to variadic

relations. In Proceedings of the 2006 Scheme and Functional
Programming Workshop, University of Chicago Technical Report
TR-2006-06, 2006, pages 105–117, 2006.

[2] R. K. Dybvig. Chez Scheme Version 7 User’s Guide. Cadence Research
Systems, 2005.

[3] D. P. Friedman, W. E. Byrd, and O. Kiselyov. The Reasoned Schemer.
The MIT Press, 2005.

[4] E. Hilsdale and D. P. Friedman. Writing macros in continuation-
passing style. In Scheme and Functional Programming 2000, page 53,
2000.

[5] R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 report on the
algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26–76,
Sept. 1998.

[6] O. Kiselyov. Macros that compose: Systematic macro programming.
In GPCE ’02: Proceedings of the 1st ACM SIGPLAN/SIGSOFT
conference on Generative Programming and Component Engineering,
pages 202–217, London, UK, 2002. Springer-Verlag.

[7] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten (eds.).
Revised6 report on the algorithmic language Scheme, September 2007.

Scheme and Functional Programming, 2009 45

Higher-Order Aspects in Order

Éric Tanter ∗

PLEIAD Laboratory
Computer Science Department (DCC)
University of Chile – Santiago, Chile

etanter@dcc.uchile.cl

Abstract
In aspect-oriented programming languages, advice evaluation is
usually considered as part of the base program evaluation. This
is also the case for certain pointcuts, such as if pointcuts in
AspectJ, or simply all pointcuts in higher-order aspect languages
like AspectScheme. While viewing pointcuts and advice as base
level computation clearly distinguishes AOP from reflection, it also
comes at a price: because aspects observe base level computa-
tion, evaluating pointcuts and advice at the base level can trig-
ger infinite regression. To avoid these pitfalls, aspect languages
propose (sometimes insufficient) ad-hoc mechanisms, which make
aspect-oriented programming more complex. This paper proposes
to clarify the situation by introducing explicit levels of execu-
tion in the programming language, thereby allowing aspects to ob-
serve and run at specific, possibly different, levels. We adopt a de-
fensive default that avoids infinite regression, and give program-
mers the means to override this default through explicit level shift-
ing expressions. We implement our proposal as an extension of
AspectScheme, and formalize its semantics. This work recognizes
that different aspects differ in their intended nature, and shows that
structuring execution contexts helps tame the power of aspects and
metaprogramming.

1. Introduction
In the pointcut-advice model of aspect-oriented program-
ming [Masuhara et al. 2003, Wand et al. 2004], as embodied in
e.g. AspectJ [] and AspectScheme [Dutchyn et al. 2006], crosscut-
ting behavior is defined by means of pointcuts and advices. A point-
cut is a predicate that matches program execution points, called
join points, and an advice is the action to be taken at a join point
matched by a pointcut. An aspect is a module that encompasses a
number of pointcuts and advices.

A major challenge in aspect language design is to cleanly
and concisely express where and when aspects should apply.
To this end, expressive pointcut languages have been devised.
While originally pointcuts were conceived as purely “meta”
predicates that cannot have any interaction with base level
code [Wand et al. 2004], the needs of practitioners have led aspect
languages to include more expressive pointcut mechanisms. This
is the case of the if pointcut in AspectJ, which takes an arbitrary
Java expression and matches at a given join point only if the ex-
pression evaluates to true. Going a step further, higher-order aspect
languages like AspectScheme consider a pointcut as a first-class,
higher-order function like any other, thus giving the full computa-
tional power of the base language to express pointcuts.

∗ Partially funded by FONDECYT projects 11060493 & 1090083.

While pointcuts were initially conceived of as pure metalevel
predicates, advices were seen as a piece of base-level functional-
ity [Wand et al. 2004]. In other words, an advice is just like an ordi-
nary function or method, that happens to be triggered “implicitly”
whenever the associated pointcut predicate matches. Considering
advice as base-level code clearly distinguishes AOP from runtime
metaobject protocols (to many, the ancestors of AOP). Indeed, a
metaobject runs, by definition, at the metalevel [Maes 1987]. This
makes it possible to consider metaobject activity as fundamentally
different from base level computation, and this can be used to get
rid of infinite regression [Denker et al. 2008]. In AOP, infinite re-
gression can also happen, and does happen, easily1: it is suffi-
cient for a piece of advice to trigger a join point that is potentially
matched by itself (either directly or indirectly). This is one of the
reasons why a specific kind of join point, which denotes advice
execution, has been introduced in AspectJ [Wand et al. 2004].

In recent work, we analyze this issue further and show that
AspectJ fails to properly recognize the possibility of infinite regres-
sion due to pointcut evaluation [Tanter 2008a]. We proposed a solu-
tion that consists in introducing a pointcut execution join point, and
a defensive default that avoids aspects matching against their own
execution. In a language like AspectScheme, controlling regres-
sion in both pointcuts and advice is done using a special primitive
(app/prim), which makes it possible to apply a function without
generating an application join point. This solution however does
not scale to join points that are produced in the dynamic extent of
the evaluation of pointcuts and advices.

Since all these issues are reminiscent of conflation of levels
in reflective architectures [Chiba et al. 1996], we choose to ques-
tion the basic assumption that pointcut and advice are intrinsi-
cally either base or meta. For instance, looking at how program-
mers use advices, it turns out that some advices are clearly base
code, while some are not: e.g. generic aspects, advices that use
thisJoinPoint (reification of the current join point to be used in
the advice), etc. To get rid of this tension between AOP and MOPs,
or between “all is base” and “all is meta”, we propose a reconcil-
iating approach in which execution levels are managed explicitly
(if needed) in a program. By doing so, we allow different (parts
of) pointcuts and advice to be run at different levels, and aspects
are bound to observe execution of particular levels. This gives pro-
grammers complete control over what aspects see and where they
run (i.e. who sees them). To alleviate the task for non-expert pro-
grammers, we also choose a defensive default that avoids regres-
sion. In addition, since we decouple pointcut and advice from ex-
ecution levels, it becomes possible to use execution level shifting

1 http://www.eclipse.org/aspectj/doc/released/progguide/pitfalls-
infiniteLoops.html

46

pc()

....setX(2)....

call ctx adv(..ctx..)
advexec

....toggle()....

call

base
meta

Figure 1. Join points and aspect execution in aspect languages
with “meta” pointcuts and base-level advice.

to explicitly move certain parts of a program execution to a higher
level, thereby hiding them from lower-level aspects.

This paper is structured as follows: Section 2 describes the
current state of affairs regarding aspect weaving, illustrating the
issue of conflation. Section 3 introduces execution levels along
with a safe default for aspects, which allows aspects of aspects,
but prevents an aspect from stepping on its own tail. Section 3.2
gives control back to the programmer by introducing explicit level
shifting expressions, which can be used to move any expression
evaluation from a level to another. We formalize the operational
semantics of our proposal in Section 4, by modeling a higher-order
aspect language with explicit execution levels. Section 5 discusses
related work and Section 6 concludes. We include the complete
formalization of our proposal in Appendix A.

2. Background and Motivation
First of all, let us consider a simple example that illustrates some
of the issues at stake (in AspectJ). We define an Activity aspect
that highlights whenever a Point object is active, that is, when
one of its methods is executing. Furthermore, we are interested in
highlighting only points that are inside a pre-determined area. This
aspect could be defined in AspectJ as follows:

public aspect Activity {
Area area = ...;
Object around(Point p) :
execution(* Point.*(..)) && this(p)
&& if(p.isInside(area)){

p.toggle(); // start highlight
Object r = proceed(p);
p.toggle(); // stop highlight
return r;

}
}

This defines exactly the aspect we are interested in. Note that
the this(p) pointcut is used to expose the currently executing
object p to both the if pointcut and the advice. The advice toggles
highlighting, then proceeds, i.e. executes the original computation
on p, gets the result, stops highlighting, and then returns the result.

2.1 Issues
The definition of the Activity aspect, though natural, is however
flawed due to three kinds of reentrancy [Tanter 2008a].

Base-triggered reentrancy. First, if a method of a Point, say
move, internally calls other methods of Point, like setX, the ad-
vice is going to apply several times, yielding repeated toggling of
highlighting resulting in incorrect behavior. This is called based-
triggered reentrancy. This can be avoided by excluding all join
points that are in the control flow of a matched join point. In
AspectJ this is done by adding a !cflowbelow condition in the

pc()

...setX(2)...

call
pcexec

..isInside(a)..

call
ctx

adv(..ctx..)
advexec

..toggle()..

call

base
meta

Figure 2. Join points and aspect execution in aspect languages
with if pointcuts or higher-order pointcuts, and base-level advice.

pointcut definition, which rules out all join points that occur in the
dynamic extent of a matched join point.

Advice-triggered reentrancy. Second, the aspect is subject to
advice-triggered reentrancy: highlighting a point object is done by
calling its toggle method, whose execution is going to be matched
by the same aspect, and so on infinitely. To solve advice-triggered
reentrancy, similarly to the solution to base-triggered reentrancy,
the idea is to exclude join points that occur in the control flow an
advice execution. For that, AspectJ includes a specific kind of join
point kind called “advice execution”. A solution therefore consists
in extending the above pointcut as follows:

execution(* Point.*(..)) && ...
&& !cflow(adviceexecution());

Figure 1 depicts the situation. When a call occurs at the base
level, a call join point is created (snaky arrow). The join point
(call box) is passed to the pointcut, which returns either false
(if there is no match), or a list of bindings (ctx) if there is a
match. The evaluation of the pointcut occurs entirely at the meta-
level [Wand et al. 2004] (without considering if pointcuts). The
bindings are used to expose context information to the advice. The
advice is then called, and runs at the base level. This means an-
other call occurring in the dynamic extent of the advice execution
is reified as a call join point, just as visible as the first one.

Pointcut-triggered reentrancy. The definition of the Activity
aspect also fails because of pointcut-triggered reentrancy: calling
isInside on the point object within the if pointcut results in
another method execution that is potentially matched by the aspect.
This is because if pointcuts are evaluated at the base level in
AspectJ. In a higher-order aspect language like AspectScheme, this
problem is exacerbated by the fact that there is no such thing as a
special if pointcut, rather, a pointcut is just a function that runs
–as any other– at the base level. The situation with higher-order
aspects (and first-order aspects with if pointcuts) is depicted on
Figure 2: execution of (part of) the pointcut is performed at the
base level, therefore the join points produced while executing the
pointcut are visible exactly like any other. Consider the following
code in AspectScheme.

(deploy (let ((area ...))
(lambda (jp)

(let ((x (jp-arg 0 jp)))
(and (Point? x)

(is-inside x area)))))
trace)

This (simplified) code defines a pointcut that matches all func-
tion applications where the first argument is a value matching the
Point? predicate, if ever the point resides within a given area.
Since the pointcut function runs at the base level, the applica-
tions of both Point? and is-inside generate a call join point
that is matched against the same pointcut function, infinitely. In

Scheme and Functional Programming, 2009 47

AspectScheme, one would have to use the special app/prim form
to apply functions in a way that does not generate join points.

2.2 Controlling Reentrancy
The analysis of the three kinds of reentrancy was formulated in
a previous article [Tanter 2008a]. We show that reentrancy can be
avoided using well-known patterns (i.e. cflow checks). However,
adding these checks to pointcut definitions makes them much more
complex than they should be. Also, current AspectJ compilers (ajc
and abc [Avgustinov et al. 2006]) make it impossible to get rid of
pointcut-triggered reentrancy without completely refactoring the
aspect definition, because they hide join points that occur lexically
in if pointcuts.

We therefore proposed a revised semantics for if pointcuts,
such that their execution is fully visible to all aspects. In addition,
we make it clear that, similarly to the advice case, it is necessary
to have a pointcut execution join point in order to discriminate the
join points that are produced by pointcut evaluation, and therefore
getting rid of pointcut-based reentrancy.

Finally, we adopt a new default semantics according to which
an aspect never sees a reentrant join point. This implies that the
above definition of Activity is correct as is with our modified
semantics. We introduce means to control reentrancy at a more
fine-grained level, as required.

While reentrancy control solves the issues of self-references, it
does not solve the more general problem of mutual visibility among
aspects. For instance, let us consider a second aspect, Mirroring,
in charge of maintaining mirrors of certain point objects:

aspect Mirroring {
void around(Point p) :
execution(* Point.set*(..)) && this(p) {

proceed(p);
proceed(lookupMirror(p));

}
}

Whenever a state changing method (denoted with the syntactic
method pattern set*(..)) executes, the aspect not only proceeds
with the original object, but also proceeds with the mirror, in
order to keep it in sync with the original point. The fact that
AspectJ supports this powerful mechanism is reminiscent of reflec-
tive method invocation in Java, and in general, metaprogramming2.
Indeed, Mirroring is an aspect that is similar in many respects
to what used to be implemented with a typical metaobject proto-
col [Zimmermann 1996].

When an object is changed, both Mirroring and Activity as-
pects match. Using aspect precedence declaration, we can make
sure that Activity runs first, so as to highlight the point ob-
ject before doing anything else. Recall that the composition of
around advices is a nested chaining, such that when Activity calls
proceed, Mirroring advice is executed, and when Mirroring in
turn calls proceed, since it is the last advice in the chain, the orig-
inal computation is performed.

The precedence declaration does not however make it possible
to solve another looping issue that appears: when Mirroring ad-
vice invokes reflectively the method on the mirror point, Activity
is going to match. If we have reentrancy control as defined
in [Tanter 2008a], execution does not enter an infinite loop, but still,
the resulting highlighting behavior is incorrect, because toggle is
applied twice on the mirror point.

2 http://dev.eclipse.org/mhonarc/lists/aspectj-users/msg03353.html

2.3 Conflation
As a matter of fact, all this situation is reminiscent of the issue
of meta-circularity, which has long been identified in reflective
architectures [des Rivières and Smith 1984]. Broadly from the
perspective of reflection, the problem is that of meta-circularity:
we are trying to use all the power of higher-order functions to
redefine, via pointcuts and advice, the meaning of some function
applications. Or, in the case of AspectJ, we are using all the
power of Java to implement pointcuts and advice. The proven, but
ad hoc, solution to this problem is to add base checks that stop
regression, such as !cflow(adviceexec(..)) in AspectJ, or the
default reentrancy control summarized above. Another solution
is to introduce a more primitive mechanism that is not subject to
redefinition, like AspectScheme’s app/prim.

However, as clearly identified by Chiba et al., these approaches
eventually fall short, for they fail to address the fundamental prob-
lem, which is that of conflating levels that ought to be kept sepa-
rate [Chiba et al. 1996]. As it turns out, an in-depth inspection of
the use of control-flow based checks to avoid reentrancy in AspectJ
shows that this mechanism is brittle and does not always work.
While we postpone the detailed description of these issues to a re-
vised and extended version of this paper, it is easy to see that cflow
checks do not help if the advice triggers some behavior in a sepa-
rate thread. Also, confusion arises due to the fact that, with around
advice, the execution of the base code (through proceed) is also
in the control flow of the advice execution. On Figures 1 and 2,
conflation is represented by the fact that all join points (boxes) are
present at the same “level”, i.e. they are all similarly visible to all
the defined aspects.

This therefore suggests to place pointcut and advice execution
at a higher-level of execution (n + 1) than “base” code (n). On
the one hand, this allows for a stable semantics, where issues of
conflation can be avoided [Chiba et al. 1996, Denker et al. 2008].
On the other hand, this boils down to reconsidering AOP as just
a form of metaprogramming, a somewhat unpopular view in the
AO community. Only Bodden et al. have looked at this issue in
AOP and proposed a solution based on placing aspects at different
levels of execution, recognizing advice execution as a meta activ-
ity [Bodden et al. 2006]. However, seeing advice as inherently meta
defeats the original idea of AOP, where an advice is just another
(probably misnamed) piece of code that has the same ontological
status as a method [Kiczales 2009].

Recognizing that AOP can be (and is) used also for metapro-
gramming, we propose to resolve this conflict by decoupling the
“metaness” concern from the pointcut and advice mechanism. We
introduce explicit level shifting in the language, so that program-
mers can specify their intent with respect to the ontological status
of their pointcuts and advices. Also, aspects can be explicitly de-
ployed at higher levels, in order to observe higher-level computa-
tion. This said, we opt for a default semantics regarding pointcuts
and advices that favors stability. That is, by default, we consider
both pointcut and advice execution as higher-level computation.
This arguable choice is purely motivated by a defensive concern:
the unaware programmer should not face infinite regression unless
she consciously chooses to.

3. Execution Levels
In this section, we introduce execution levels and discuss how they
can be used in conjunction with aspects. Section 3.1 exposes the de-
fault way in which pointcuts and advices are evaluated. Section 3.2
gives more control to programmers by exposing level shifting ex-
pressions. Section 3.3 briefly discusses an interesting perspective
raised by the introduction of execution levels.

48 Scheme and Functional Programming, 2009

pc()

...setX(2)...

call

pcexec

..isInside(a)..

call

ctx
adv(..ctx..)

advexec

..toggle()..

call

Figure 3. Running pointcut and advice at a higher level of execu-
tion.

pc()

..move(..)..

call

pcexec

..setX(..)..

call

ctx
adv(..ctx..)

advexec

..before.. (proceed p) ..after..

Figure 4. Proceeding to the original computation is done at the
lower level.

3.1 Aspects and Levels: Default
Figure 3 depicts the default evaluation of pointcuts and advice
with level shifting. As before, we adopt the convention that the
evaluation of base code (at level 0) generates join points at level 1
(e.g. the call box), where aspects can potentially match and trigger
advice. Pointcut and advice execution join points are generated, but
at level 2. Similarly the whole evaluation of pointcuts and advices
is done at level 1, so the join points produced in the dynamic extent
of these evaluations are generated at level 2. This ensures that the
call of isInside done during pointcut evaluation of Activity is
not seen at the same level as the call to setX (level 0). The same
holds for the call to toggle in the advice.

Proceed. As briefly explained in Section 2.2, an advice can pro-
ceed to the computation originally described by the join point.
When several aspects match the same join point, like Activity
and Mirroring on setX, the corresponding advices are chained
such that calling proceed in advice k triggers advice k + 1. Only
when the last advice proceeds is the original computation per-
formed. The original computation clearly belongs to the same level
as the original call. This means that in our default semantics, the
last call to proceed in a chain of advices runs the original compu-
tation at the lower level. Subsequently, join points generated by the
evaluation of the original computation (level 0 in that case) are seen
at the same level as before (level 1). This is shown on Figure 4.

Aspects of aspects. The default semantics of computing point-
cut and advice at a higher-level ensures that other aspects do
not see these computations. In our example with Activity and
Mirroring, this is fine for the case of Mirroring: the execution
of its advice, which performs a reflective invocation on the mirror
object, is done at level 1, so the method execution of the mirror is
not visible to Activity.

up[move(..)]

move(..)

call

....setX(..)....

call

Figure 5. Shifting up.

down[isInside(a)]

isInside(a)

call

....getX()....

call

Figure 6. Shifting down.

However, this layering also implies that Mirroring cannot see
the advice computation of Activity; therefore the mirror object is
not highlighted when it ought to. In order to allow aspects to ob-
serve the activity of other aspects, while keeping the same default
semantics, it is necessary to define aspects at higher levels. For in-
stance, in [Bodden et al. 2006], this is done by declaring certain
aspects as meta[n] where n is the level at which the aspect stands.
The following section introduces a more uniform and flexible solu-
tion to this issue.

3.2 Controlling Execution Levels
While installing aspects at higher levels is correct, it stays within
the perspective of “aspects are meta”. From a software engineering
viewpoint, it also implies that at the time Mirroring is deployed,
it is known that this aspect may be required at higher levels.

As we already mentioned before, AOP is not solely metapro-
gramming with syntactic sugar: the original idea is that advice is
a piece of base-level code. In some cases, advice execution should
be visible to aspects that observe base level execution. This is the
case for instance of the Activity aspect: its advice, which high-
lights points, should be executed at the base level. This allows
Mirroring to coherently update the mirror objects. This second
alternative is more compatible with the traditional AO view that
“advices are base”. From an engineering viewpoint, it allows the
implementor of the Activity aspect to declare that some part of
its pointcut and/or advice should be considered as standard base
code. Mirroring does not need to be aware that some other aspect
performs computation of interest to it.

Up and down. In order to reconcile both approaches, we intro-
duce explicit level shifting expressions in the language, such that a
programmer can decide at which level an expression is evaluated.
Level shifting is orthogonal to the pointcut/advice mechanism, and
can be used to move any computation.

Figure 5 shows that shifting up an expression moves the com-
putation of that expression a level above the current level. This im-
plies that join points generated during the evaluation of that expres-
sion are visible one level above. Conversely, shifting an expression
down moves the computation of that expression a level below the
current level, as depicted on Figure 63.

Aspects in order. Using up and down, it is possible to control
where aspects are run. One can either use these level shifting
expression directly within the definitions of pointcut and advice
functions, or use wrappers that embed a whole function in a level
shifting expression.

For instance, suppose that the computation of is-inside in the
pointcut of Activity is expensive, and that a memoization aspect
is used. It is possible to move the computation of is-inside down

3 For completeness, we consider that execution starts at level 0 and that
evaluating a down expression at level 0 has no effect.

Scheme and Functional Programming, 2009 49

base Weave Activity Mirroring

up

down

up

down

(up)

(down)

(up)
(down)

...
setX(2)

body
of
setX

...

Shift
Down

Shift
Up

shiftup(Mirroring)

apply
pointcuts

compose
advices

Figure 7. Level shifting with two advices, Activity and Mirroring.
Level 0 execution is white, level 1 execution is grey.
(Backward thin arrows are “returns”, with their associated level shift.)

to the base level, while still ensuring that the check of the Point?
predicate is not considered base level computation:

(deploy (let ((area ...))
(lambda (jp)

(let ((x (jp-arg 0 jp)))
(and (Point? x)

(down (is-inside x area))))))
trace)

We can also define higher-order wrapper functions, like
shift-up, which takes a function and returns a new function that
runs the given function one level above:

(define (shift-up f)
(lambda args (up (apply f args))))

It is possible to depart from the chosen default semantics,
to express the original AO view according to which pointcuts
are metalevel predicates and advice is base code. We can use a
deploy-aj sugar defined as:

(deploy-aj pc adv)
≡ (deploy pc (adv-shift-down adv))

Note that here we cannot simply use shift-down (similar to
shift-up defined previously) to transform the advice. Indeed,
multiple advices are chained together by means of proceed. In
a higher-order aspect language , an advice is a function that takes
a proceed function, context information, and a variable number
of arguments at the join point [Dutchyn et al. 2006]. The proceed
function is used to either call the next advice, or to run the original
computation, if it is the last advice in the chain. Therefore, simply
shifting the execution level of one advice implies that subsequent
advices also run at the modified level. One should rather use the
advice shifting function below:

(define (adv-shift-down adv)
(lambda (proceed ctx . args)

(let ((new-proc (shift-up proceed)))
(down (apply adv (append (list new-proc ctx)

args))))))

adv-shift-down ensures that the execution levels are maintained
appropriately by shifting the proceed function in the reverse
direction, i.e. the advice body is shifted down, while the proceed
function is shifted up with shift-up.

Figure 7 shows the evolution of control flow with our two as-
pects Activity and Mirroring that both apply on a call to setX.
The evaluation of pointcuts is done at level 1, since this is the
default. The advices that apply are chained. In this example, the
Activity advice has been wrapped (using adv-shift-down) so
as to execute at level 0. When the Shift Down wrapper runs, it cre-
ates a Shift Up wrapper (with shift-up) for the following advice
in the chain. Therefore, when the Activity advice proceeds, ex-
ecution shifts up, and the Mirroring advice runs at level 1 (the
default). When it proceeds, since it is the last advice, the body of
setX is run, at level 0.

3.3 Level Shifting and Information Hiding
By moving pointcuts and advices up and down, one actually con-
trols their visibility, with respect to other aspects. As it turns out,
level shifting is orthogonal to the pointcut/advice mechanism, to
the extent that it applies to any expression, not only pointcuts and
advice bodies. This mechanism can therefore be used to run any
arbitrary piece of code at another level of execution4.

For instance, if a function invokes a security manager each time
it is applied in order to ensure that its execution is authorized, it
can “hide” the invocation and execution of the security manager
from aspects observing its execution level by pushing it to a higher
level. This means that level shifting can be used to address, to
some extent, the issue of information hiding violation that has been
raised with respect to standard aspect languages. For instance, in
Open Modules [Aldrich 2005], only join points explicitly exposed
though pointcuts of the interface of a module are visible to aspects
of other modules. This connection suggests interesting extensions
of our work towards a flexible notion of “execution domains”
(not necessarily sequential levels) that could be used for similar
purposes.

Also, the level-shifting operators up and down are relative only,
making it possible to shift execution one level up or down, respec-
tively. It remains to be determined through practical experience
whether these operators are sufficient. One could indeed consider
a bottom operator that moves execution down to level 0, as well
as a top operator that moves execution to the uppest level, so that
execution is invisible to all aspects. The semantics we present in
the following section does not consider these operators, though it
would be straightforward to accomodate them.

4. Semantics
We now turn to the formal semantics of higher-order aspects with
level shifting. We introduce a core language extended with exe-
cution levels and aspect weaving. In this section we only present
the essential elements, and skip the obvious. The complete consol-
idated formal description of the language is provided in appendix.

Figure 8 presents the user-visible syntax of the core language,
i.e. without aspects nor execution levels. The language is a simple
Scheme-like language with booleans, numbers and lists, and a num-
ber of primitive functions to operate on these. The only expressions
considered are multi-arity function application, and if expressions.
The full language includes also sequencing (begin) and binding
(let) expressions for convenience.

4 In this work, level shifting is useful only in the presence of aspects, since
only aspects are sensitive to levels.

50 Scheme and Functional Programming, 2009

V alue v ::= (λ(x · · ·) e) | n | #t | #f
| (list v · · ·) | prim | unspecified

prim ::= list | cons | car | cdr | empty?
| eq? | + | − | . . .

Expr e ::= v | x | (e e · · ·) | (if e e e)

v ∈ V , the set of values
n ∈ N , the set of numbers
list ∈ L , the set of lists
x ∈ X , the set of variable names
e ∈ E , the set of expressions

EvalCtx E ::= [] | (v · · · E e · · ·) | (if E e e)

Figure 8. Syntax of the core language.

Expr e ::= . . . | (up e) | (down e) |
(in-up e) | (in-down e)

EvalCtx E ::= . . . | (in-up E) | (in-down E)

〈l, J, E[(up e)]〉 ↪→ 〈l + 1, J, E[(in-up e)]〉 INUP
〈l, J, E[(in-up v)]〉 ↪→ 〈l − 1, J, E[v]〉 OUTUP

〈l, J, E[(down e)]〉 ↪→ 〈l − 1, J, E[(in-down e)]〉 INDWN
〈l, J, E[(in-down v)]〉 ↪→ 〈l + 1, J, E[v]〉 OUTDWN

Figure 9. Shifting execution levels.

We describe the operational semantics of our language via a
reduction relation ↪→, which describes evaluation steps:

↪→: L ×J × E → L ×J × E

An evaluation step consists of an execution level l ∈ L , a join
point stack J ∈ J and an expression e ∈ E . The reduction
relation takes a level, a stack, and an expression and maps this to a
new evaluation step. The reduction rules for the core language are
standard [Matthews and Findler 2008] and not presented here. See
the appendix for details.

In the following we describe the semantics of execution levels,
the join point stack, aspects and their deployment, and the weaving
semantics. By convention, when we introduce new user-visible
syntax (e.g. the aspect deployment expression), we use bold font.
Extra expression forms added only for the sake of the semantics are
written in typewriter font.

4.1 Execution Levels
The language supports explicit execution level shifting forms, up
and down (Figure 9). Correspondingly, there are two (not user-
visible) marker expressions, in-up and in-down used to keep
track of the level counter. When encountering an up expression,
the level counter is increased, and an in-up marker is placed in
the execution context (INUP). When the nested expression has
been reduced to a value, the in-up mark is disposed, and the
level counter is decreased (OUTUP). Evaluation of a shift down
expression is done similarly (see rules INDOWN and OUTDOWN).

J ::= j + J | •
j ::= dl, k, v, v · · ·e
k ::= call | pc | adv
l ∈ N
J ∈ J , the set of join point stacks

Expr e ::= . . . | jp j | (in-jp e)

EvalCtx E ::= . . . | (in-jp E)

〈l, j + J,E[in-jp v]〉 ↪→ 〈l, J, E[v]〉 OUTJP

Figure 10. The join point stack.

4.2 Join Point Stack
We follow [Clifton and Leavens 2006] in the modeling of the join
point stack (Figure 10). The join point stack J is a list of join point
abstractions j, which are tuples dl, k, v, v · · ·e: the execution level
of occurrence l, the join point kind k, the applied function v, and
the arguments v · · · . We consider three kinds of join points, call
for function applications, pc for pointcut executions, and adv for
advice executions5.

In order to keep track of the join point stack in the semantics we
introduce two (not user-visible) expression forms: jp j introduces
a join point, and (in-jp e) keeps track of the fact that execution is
proceeding under a given dynamic join point. The definition of the
evaluation context is updated accordingly (Figure 10).

A join point abstraction captures all the information required to
match it against pointcuts, as well as to trigger its corresponding
computation when necessary. For instance, the reduction rule for
call join points is as follows (we will see other kinds later on):

〈l, J, E[((λ(x · · ·) e) v · · ·)]〉 APP

↪→ 〈l, J, E[jp dl, call, (λ(x · · ·) e), v · · ·e]〉
This means that when a function is applied to a list of arguments,

the expression is reduced to a jp expression with the definition of
the corresponding join point, which embeds the current execution
level l, its kind call, the function definition, and the values passed
to it. A later rule pushes the thus created join point to the stack
J , marking the expression with in-jp, and then triggers weaving.
Poping a join point from the stack is done by the OUTJP rule, when
the expression under a dynamic join point has been reduced to a
value.

4.3 Aspects and Deployment
As described on Figure 11, an aspect is a tuple 〈l, pc, adv〉 where
l denotes the execution level at which it is defined, pc is the
pointcut and adv the advice (both first-class functions). More pre-
cisely, a pointcut is a function that takes a join point stack as
input and produces either #f if it does not match, or a (possi-
bly empty) list of context values exposed to the advice. Follow-
ing [Dutchyn et al. 2006, Dutchyn 2006], higher-order advice is
modeled as a function receiving first a function to apply whenever

5 For simplicity and conciseness, we do not distinguish call and execution
join points here. Our implementation (see Section 4.5) does make this
difference, and therefore supports four join point kinds.

Scheme and Functional Programming, 2009 51

Aspects A = {〈li, pci, advi〉 | i = 1, . . . , |A |}
Pointcut pc ∈ J → {#f} ∪L

Advice adv ∈ (V ∗ → V)×L × V ∗ → V

prim ::= . . . | deploy

〈l, J, E[(deploy vpc vadv)]〉 DEPLOY

↪→ 〈l, J, E[unspecified]〉 and A = {〈l, vpc, vadv〉} ∪A

Figure 11. Aspects and deployment (global environment A).

〈l, J ′, E[jp dl, k, vλ, v · · ·e]〉 WEAVE

↪→ 〈l, J, E[(in-jp (up (app/primW J|A |KJ v · · ·)))]〉
where J = j + J ′

and, with J = dl, k, (λ(x · · ·) e), v · · ·e+ J ′:

W J0KJ = (λ(a · · ·)
(down (app/prim (λ(x · · ·) e) a · · ·)))

W JiKJ = (app/prim (λ(p)
(if (eq? li l)

(let ((c (app/pc pci J)))
(if c

(λ(a · · ·)(app/adv advi p c a · · ·))
p))

p))
W Ji− 1KJ)

Figure 12. Aspect weaving, with level shifting.

the advice wants to proceed, a list of values exposed by the point-
cut, and the arguments passed at the original join point.

An aspect environment A is a set of such aspects. An aspect
is deployed with a deploy expression (added as a primitive to
the language, see Figure 11). To simplify our reduction seman-
tics, in this section we have not included the aspect environment
as part of the description of an evaluation step. Rather, we simply
“modify” the global aspect environment A upon aspect deploy-
ment6 (see rule DEPLOY). Also note that we do not model the dif-
ferent scoping strategies of AspectScheme here—we restrain our-
selves to deployment in a global aspect environment. For more ad-
vanced management of aspect scoping and aspect environments,
see [Tanter 2008b]. When an aspect is deployed, it captures its exe-
cution level of definition. This means that, when executing at level
n, (deploy p a) deploys the aspect such that it sees join points rep-
resenting execution of level n, and (up (deploy p a)) deploys the
aspect a level above, such that it sees join points that denote execu-
tion at level n+ 1.

4.4 Weaving
We now turn to the semantics of aspect weaving. The WEAVE rule
describes the process. A jp expression is converted to an in-jp
expression, and the join point is pushed onto the stack. The inner
expression of in-jp is the application, one execution level up, of

6 The complete semantics given in the appendix properly includes the aspect
environment in the evaluation steps.

Expr e ::= . . . | (f e e · · ·)
AppForm f ::= app/pc | app/adv | app/prim
EvalCtx E ::= . . . | (f v · · · E e · · ·)

〈l, J, E[((λ(x · · ·) e) v · · ·)]〉 APP

↪→ 〈l, J, E[jp dl, call, (λ(x · · ·) e), v · · ·e]〉

〈l, J, E[(app/pc (λ(x · · ·) e) v · · ·)]〉 APPPC

↪→ 〈l, J, E[jp dl, pc, (λ(x · · ·) e), v · · ·e]〉

〈l, J, E[(app/adv (λ(x · · ·) e) v · · ·)]〉 APPADV

↪→ 〈l, J, E[jp dl, adv, (λ(x · · ·) e), v · · ·e]〉

〈l, J, E[(app/prim (λ(x · · ·) e) v · · ·)]〉 APPPRIM

↪→ 〈l, J, E[e{v · · · /x · · · }]〉

Figure 13. Different kinds of application.

the list of advice functions that match the correct join point properly
chained together, to the original arguments. Note that the weaving
rule applies uniformly over the different kinds of join points.

Our weaving process is closely based on that described by
Dutchyn. It only differs in that we deal with execution levels, and
introduce both pointcut and advice join points. The W metafunc-
tion recurs on the global aspect environment A and returns a com-
posed procedure whose structure reflects the way advice is going to
be dispatched (Figure 12).

For each aspect 〈li, pci, advi〉 in the environment, W first
checks whether the aspect is at the same execution level as the join
point, i.e. if the aspect can actually “see” the join point. If so, it
applies its pointcut pci to the current join point stack. If the point-
cut matches, it returns a list of context values, c. W then returns
a function that, given the actual join point arguments, applies the
advice advi. All this process is parameterized by the function to
proceed with, p. This function is passed to the advice, and if an as-
pect does not apply, then W simply returns this function. The base
case, W J0KJ corresponds to the execution of the original function.
Note that it is performed by downing the execution level, to reflect
the fact that while, by default, pointcuts and advice run at an upper
level, the original function runs at its original level of application.

The WEAVE rule uses a number of different application forms,
namely app/pc, app/adv and app/prim, described in Figure 13.
These forms are introduced to be able to distinguish the different
manners of applying a function in the language. Note that these
forms are not in user-visible syntax. However, since we use the
base language to weave, we need to be able to denote the primi-
tive application of a function, i.e. such that it does not trigger a join
point. The APPPRIM rule simply performs the classical βv reduc-
tion. app/prim is used to hide the activity of the pointcut matcher
and the advice dispatcher, as well as to perform an actual function
application (i.e. when all aspects have proceeded, see W J0KJ)7.
W uses two dedicated application forms to apply pointcuts and

advice, respectively, app/pc and app/adv. These forms are intro-
duced so as to generate join points of different kinds, corresponding
to different uses of a function. Rule APPPC creates a join point of
kind pc, and rule APPADV creates a join point of kind adv.

7 Note that contrary to AspectScheme, thanks to management of execution
levels, it is not necessary for app/prim to be in user-visible syntax.

52 Scheme and Functional Programming, 2009

4.5 Availability
We have defined the complete semantics of our language using PLT
Redex, a domain-specific language for specifying reduction seman-
tics [Felleisen et al. 2009]. The automatically-generated rendering
of the complete language grammar, reduction relation, and weav-
ing metafunction W are given in Appendix A. The full definition,
as well as a number of executable test cases can be obtained from:
http://pleiad.cl/research/scope

We have also implemented our language as an extension of
AspectScheme (i.e. a language module extending PLT Scheme us-
ing macros), available at the same website. The language supports
both call and execution join points, in addition to pointcut and ad-
vice execution, and includes the different scoping semantics for as-
pects (statically and dynamically scoped) in addition to global, top-
level deployment. It also includes level shifting forms (as macros
that handle a dynamically-scoped parameter).

5. Related Work
Reflective towers. Seminal work on reflection focused on the
notion of a reflective tower. This tower is a stack of interpreters,
each one executing the one below. Reification and reflection are
level-shifting mechanisms, by which one can navigate in the tower.
This idea was first introduced by Brian Smith [Smith 1982] with
2-Lisp and 3-Lisp, and different flavors of it were subsequently
explored, with languages like Brown [Wand and Friedman 1988]
and Blond [Danvy and Malmkjaer 1988].

2-Lisp focuses on structural reflection, by which values can be
moved up and down. An up operation reduces its argument to a
value and returns (a representation of) the internal structure of that
value (i.e. its “upper” identity). Conversely, down returns the base-
level value that corresponds to a given internal structure. 3-Lisp
introduces procedural reflection by which computation can actually
be moved in the tower. This is done by introducing a special kind
of abstraction, a reflective procedure, which is a procedure of fixed
arity that, when applied, runs at the level above8. It receives as
parameters some internal structures of the interpreter (typically the
current expression, environment, and continuation). Control can
return back to the level below by applying the evaluation function.

In this framework, one could describe the pointcut-
advice mechanism as follows, at least in its original
form [Wand et al. 2004]. Pointcuts are reflective procedures,
that take as parameter (a representation of) the current join point.
In contrast to reflective procedures in reflective languages, they are
not explicitly applied; rather, they are “installed” in the interpreter,
and their application is triggered by the interpreter at each join
point. A pointcut runs at the upper level and, if it matches, returns
bindings that are consequently used for the (base-level) execution
of the advice.

The level shifting operations we introduce in this work differ
from level shifting in the reflective tower in a number of ways. Most
importantly, there is no tower of interpreters at all: execution levels
are just properties of execution flows. Only aspects (more precisely,
pointcuts) are sensitive to this property of execution flows. Point-
cuts and advices are all evaluated by the very same interpreter that
evaluates the whole program. Level shifting operations just taint
the execution flow such that the produced join points are only vis-
ible to aspects sitting at the corresponding level. This “illusion of
the tower” also explains why there is no explicit wrapping and un-
wrapping of values between levels (as opposed to e.g. 2-Lisp).

8 Interestingly, Blond makes the distinction between reflective procedures
that run at the level above the level at which they are applied, and procedures
that run at the level above that at which they were defined.

Infinite regression. The issue of infinite regres-
sion in metalevel architectures has been long identi-
fied [des Rivières and Smith 1984, Kiczales et al. 1991]. Chiba,
Kiczales and Lamping recognized the ad hoc nature of regression
checks, identifying the more general issue of metalevel confla-
tion [Chiba et al. 1996]. In the proposed meta-helix architecture,
extensions to objects (e.g. new fields) are layered on top of each
other. Levels are reified, at runtime if necessary, and an object has
a representative at each level. An “implemented-by” relation based
on delegation keeps level clearly separated.

In previous work, we studied similar issues with a particular
kind of aspects, which perform structural adaptations (a.k.a. inter-
type declarations or introductions). We proposed a mechanism of
visibility of structural changes introduced by aspects [Tanter 2006,
Tanter and Fabry 2009]. The visibility system, implemented in the
Reflex AOP kernel, allows one to declare which aspects see the
changes made by which other aspects, or to declare that changes
made by an aspects are globally visible or globally hidden. While
more flexible that a strict layered architecture like the meta-helix,
this system is harder to reason about and specifications can easily
conflict with each other. Also, in this proposal, it is impossible for
base level code to hide certain members so they are not visible to
(some) aspects.

Stratified aspects. To the best of our knowledge, the first piece
of work directly related to the issue of infinite recursion with
the pointcut/advice mechanism is due to Bodden and colleagues.
With stratified aspects, aspects are associated with levels, and
the scope of pointcuts is restricted to join points of lower lev-
els [Bodden et al. 2006]. The work focuses on advice-triggered
reentrancy only, and does not mention the issue related to e.g. if
pointcuts. A more fundamental issue with stratified aspects is that
levels are statically declared and determined. That is, classes live
at level 0, aspects at level 1, meta-aspects at level 2, and so forth.
This means that stratified aspects fail to recognize that levels are a
property of execution flows, not of static declared entities. As a con-
sequence, as recognized by the authors, it is impossible to properly
handle shift downs, i.e. when an aspect calls a method of a level 0
object.

The meta context. Recently, Denker et al. introduced the
idea of passing an implicit “meta-context” argument to meta-
objects such that they can determine at which level they
run [Denker et al. 2008]. This generalizes the idea of the meta-helix
and recognizes that levels are a property of execution flows. In their
system, metaobjects always run at their level, and execution only
shift downs when a metaobject calls proceed on the reification
of an execution event (i.e. a join point in AO terminology). While
close to ours, the work really remains in the domain of metalevel
architectures and therefore cannot reconcile with the original AO
view, according to which advice is base level. Here, in addition,
we uncouple level shifting from the behavioral reflection/pointcut-
advice mechanism. Finally, the level of execution of activation con-
ditions (the equivalent of pointcut residues in that model) is left
unspecified.

Controlling reentrancy. In previous work, we analyzed the
issue of unwanted applications of aspects in a general set-
ting [Tanter 2008a]. We identify three kinds of aspect reentrancy:
base-triggered reentrancy (e.g. caused by a recursive program),
pointcut-triggered reentrancy (e.g. caused by an if pointcut), and
advice-triggered reentrancy. After showing the somewhat surpris-
ing strategies of current AspectJ compilers with respect to if point-
cuts, we propose a safe default semantics for aspects, according
to which the activity of an aspect is invisible to itself, and an
aspect is immune to iterative/recursive refactorings. To deal with
pointcut-triggered reentrancy, we introduce the pointcut execution

Scheme and Functional Programming, 2009 53

join point. We also allow for well-defined scoped reentrancy to be
introduced, for instance to match reentrant join points whenever
the executing objects differ. The reentrancy control proposal does
not deal with levels at all. It is only concerned with properly deal-
ing with the conflation when it occurs (as indicated by the original
AO view). In fact, in an aspect language with execution levels as
proposed in this paper, reentrancy control is still needed, for cases
where the programmer causes conflation to occur (e.g. by running
an advice at a lower level).

6. Conclusion
We have proposed a higher-order aspect language design in which
pointcuts and advices are regular functions and yet, by default, in-
finite regression never occurs. This is done by introducing a notion
of levels of execution that help discriminate the context in which
functions are being used. Explicit level shifting expressions make
it possible to control the visibility of computation. We believe this
work reconciles the (usually unwanted or embarassing) “metaness”
of aspects with the (usually unrecognized) “baseness” of runtime
metaobject protocols. The key point lies in viewing metaness not
as an intrinsic/static property of a piece of program, but as a prop-
erty of execution flows, ultimately under control of the program-
mer. We are working on adding execution levels to practical aspect
languages like AspectJ in order to empirically validate the useful-
ness of the proposed design.

Acknowledgments. We thank Gregor Kiczales for discussions on
this topic and proposal, as well as the anonymous reviewers for
their insightful comments and suggestions.

References
[Aldrich 2005] Aldrich, J. (2005). Open modules: Modular reasoning

about advice. In Black, A. P., editor, Proceedings of the 19th European
Conference on Object-Oriented Programming (ECOOP 2005), number
3586 in Lecture Notes in Computer Science, pages 144–168, Glasgow,
UK. Springer-Verlag.

[Avgustinov et al. 2006] Avgustinov, P., Christensen, A. S., Hendren, L.,
Kuzins, S., Lhoták, J., Lhoták, O., de Moor, O., Sereni, D., Sittampalam,
G., and Tibble, J. (2006). abc: an extensible AspectJ compiler. In
Transactions on Aspect-Oriented Software Development, volume 3880
of Lecture Notes in Computer Science, pages 293–334. Springer-Verlag.

[Bodden et al. 2006] Bodden, E., Forster, F., and Steimann, F. (2006).
Avoiding infinite recursion with stratified aspects. In Proceedings of
Net.ObjectDays 2006, Lecture Notes in Informatics, pages 49–54. GI-
Edition.

[Chiba et al. 1996] Chiba, S., Kiczales, G., and Lamping, J. (1996).
Avoiding confusion in metacircularity: The meta-helix. In Proceedings
of the 2nd International Symposium on Object Technologies for
Advanced Software (ISOTAS’96), volume 1049 of Lecture Notes in
Computer Science, pages 157–172. Springer-Verlag.

[Clifton and Leavens 2006] Clifton, C. and Leavens, G. T. (2006).
MiniMAO1: An imperative core language for studying aspect-oriented
reasoning. Science of Computer Programming, 63:312–374.

[Danvy and Malmkjaer 1988] Danvy, O. and Malmkjaer, K. (1988).
Intensions and extensions in a reflective tower. In Proceedings of
the 1988 ACM Conference on Lisp and Functional Programming, pages
327–341, Snowbird, Utah, USA. ACM Press.

[Denker et al. 2008] Denker, M., Suen, M., and Ducasse, S. (2008).
The meta in meta-object architectures. In Proceedings of TOOLS
Europe, Lecture Notes in Business and Information Processing, Zurich,
Switzerland. Springer-Verlag. To appear.

[des Rivières and Smith 1984] des Rivières, J. and Smith, B. C. (1984).
The implementation of procedurally reflective languages. In Proceedings
of the Annual ACM Symposium on Lisp and Functional Programming,
pages 331–347.

[Dutchyn 2006] Dutchyn, C. (2006). Dynamic Join Points: Model and
Interactions. PhD thesis, University of British Columbia, Canada.

[Dutchyn et al. 2006] Dutchyn, C., Tucker, D. B., and Krishnamurthi, S.
(2006). Semantics and scoping of aspects in higher-order languages.
Science of Computer Programming, 63(3):207–239.

[Felleisen et al. 2009] Felleisen, M., Findler, R. B., and Flatt, M. (2009).
Semantics Engineering with PLT Redex. The MIT Press. To appear.

[Kiczales 2009] Kiczales, G. (2009). Personal communication.

[Kiczales et al. 1991] Kiczales, G., des Rivières, J., and Bobrow, D. G.
(1991). The Art of the Metaobject Protocol. MIT Press.

[Maes 1987] Maes, P. (1987). Concepts and experiments in computational
reflection. In Meyrowitz, N., editor, Proceedings of the 2nd International
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 87), pages 147–155, Orlando, Florida, USA.
ACM Press. ACM SIGPLAN Notices, 22(12).

[Masuhara et al. 2003] Masuhara, H., Kiczales, G., and Dutchyn, C.
(2003). A compilation and optimization model for aspect-oriented
programs. In Hedin, G., editor, Proceedings of Compiler Construction
(CC2003), volume 2622 of Lecture Notes in Computer Science, pages
46–60. Springer-Verlag.

[Matthews and Findler 2008] Matthews, J. and Findler, R. B. (2008). An
operational semantics for Scheme. Journal of Functional Programming,
18(1):47–86.

[Smith 1982] Smith, B. C. (1982). Reflection and semantics in a procedural
language. Technical Report 272, MIT Laboratory of Computer Science.

[Tanter 2006] Tanter, É. (2006). Aspects of composition in the Reflex AOP
kernel. In Löwe, W. and Südholt, M., editors, Proceedings of the 5th
International Symposium on Software Composition (SC 2006), volume
4089 of Lecture Notes in Computer Science, pages 98–113, Vienna,
Austria. Springer-Verlag.

[Tanter 2008a] Tanter, É. (2008a). Controlling aspect reentrancy. Journal
of Universal Computer Science, 14(21):3498–3516. Best Paper Award
of the Brazilian Symposium on Programming Languages (SBLP 2008).

[Tanter 2008b] Tanter, É. (2008b). Expressive scoping of dynamically-
deployed aspects. In Proceedings of the 7th ACM International
Conference on Aspect-Oriented Software Development (AOSD 2008),
pages 168–179, Brussels, Belgium. ACM Press.

[Tanter and Fabry 2009] Tanter, É. and Fabry, J. (2009). Supporting
composition of structural aspects in an AOP kernel. Journal of Universal
Computer Science, 15(3):620–647.

[Wand and Friedman 1988] Wand, M. and Friedman, D. P. (1988). The
mystery of the tower revealed: a non-reflective description of the
reflective tower. Lisp and Symbolic Computation, 1(1):11–37.

[Wand et al. 2004] Wand, M., Kiczales, G., and Dutchyn, C. (2004).
A semantics for advice and dynamic join points in aspect-oriented
programming. ACM Transactions on Programming Languages and
Systems, 26(5):890–910.

[Zimmermann 1996] Zimmermann, C. (1996). Advances in Object-
Oriented Metalevel Architectures and Reflection. CRC Press.

54 Scheme and Functional Programming, 2009

A. Complete definition of the semantics
This appendix includes the complete grammar of the language
(Figure 15), the weaving functionW (Figure 14), and the complete
reduction relation (Figure 16), all automatically generated from the
PLT Redex definition.

e ::= (e e ...) | (if e e e) | x | v
 | (let ((x e) ...) e)
 | (begin e e ...)
 | (up e) | (down e)
 | (in-up e) | (in-down e)
 | (jp j) | (in-jp e)
 | (f e e ...)

f ::= app/pc | app/adv | app/prim
v ::= (! (x ...) e) | (list v ...) | number | #t | #f

 | string | prim | unspecified
prim ::= + | - | list | cons | car | cdr | empty? | eq? | deploy

P ::= (l J A E)
l ::= number
J ::= (stack j ...)
j ::= (l k v v ...)
k ::= “call” | “pc” | “adv”
A ::= (asps a ...)
a ::= (l v v)
E ::= (v ... E e ...)

 | (if E e e)
 | (begin E e e ...)
 | (in-up E) | (in-down E) | (in-jp E)
 | (f v ... E e ...)
 | []

x ::= variable-not-otherwise-mentioned

Figure 15. Complete grammar (generated automatically from PLT
Redex).

Scheme and Functional Programming, 2009 55

W[[(l1 k (! (x ...) e) v ...), (asps (l2 v1 v2) a ...)]] = (app/prim (! (p)
(if (eq? l1 l2)

(let ((c (app/pc v1 (list k (! (x ...) e) v ...))))
(if c

(! (x ...) (app/adv v2 p c x ...))
p))

p))
W[[(l1 k (! (x ...) e) v ...), (asps a ...)]])

W[[(l1 k (! (x ...) e) v ...), (asps)]] = (! (x ...) (down (app/prim (! (x ...) e) x ...)))

Figure 14. Weaving meta-function (generated automatically from PLT Redex).

P[(+ number1 number2)] P[(+ number1 number2)] [+]

P[(- number1 number2)] P[(- number1 number2)] [-]

P[(if #f e1 e2)] P[e2] [if-f]

P[(if v1 e1 e2)] P[e1] [if-t]
 where v1

P[(let ((x e) ...) e0)] P[(app/prim (! (x ...) e0) e ...)] [let]

P[(begin v e1 e2 ...)] P[(begin e1 e2 ...)] [seq]

P[(begin e)] P[e] [outseq]

P[(eq? v1 v2)] P[#t] [eq-t]
 where (eq? v1 v2)

P[(eq? v1 v2)] P[#f] [eq-f]
 where (not (eq? v1 v2))

P[(cons v0 (list v1 ...))] P[(list v0 v1 ...)] [cons]

P[(car (list v1 v2 ...))] P[v1] [car]

P[(cdr (list v1 v2 ...))] P[(list v2 ...)] [cdr]

P[(empty? (list))] P[#t] [empty?-t]

P[(empty? v1)] P[#f] [empty?-f]
 where (not (equal? v1 (list)))

(l1 J A E[(up e)]) ((add1 l1) J A E[(in-up e)]) [InUp]

(l1 J A E[(in-up v)]) ((sub1 l1) J A E[v]) [OutUp]

(l1 J A E[(down e)]) ((sub1 l1) J A E[(in-down e)]) [InDwn]

(l1 J A E[(in-down v)]) ((add1 l1) J A E[v]) [OutDwn]

(l1 J (asps a ...) E[(deploy v1 v2)]) (l1 J (asps (l1 v1 v2) a ...) E[unspecified]) [Deploy]

P[(app/prim (! (x ...) e) v ...)] P[subst-n[[(x v), ..., e]]] [AppPrim]

(l1 J A E[((! (x ...) e) v ...)]) (l1 J A E[(jp (l1 “call” (! (x ...) e) v ...))]) [App]

(l1 J A E[(app/pc (! (x ...) e) v ...)]) (l1 J A E[(jp (l1 “pc” (! (x ...) e) v ...))]) [AppPc]

(l1 J A E[(app/adv (! (x ...) e) v ...)]) (l1 J A E[(jp (l1 “adv” (! (x ...) e) v ...))]) [AppAdv]

(l1 (stack j ...) (asps a ...) E[(jp (l1 k (! (x ...) e) v ...))]) (l1 (stack (l1 k (! (x ...) e) v ...) j ...) (asps a ...)
E[(in-jp (up (app/prim W[[(l1 k (! (x ...) e) v ...),

(asps a ...)]]
v ...)))])

 [Weave]

(l1 (stack (l1 k v0 v ...) j ...) A E[(in-jp v1)]) (l1 (stack j ...) A E[v1]) [OutJp]

Figure 16. Complete set of reduction rules (generated automatically from PLT Redex).

56 Scheme and Functional Programming, 2009

Fixing Letrec (reloaded)

Abdulaziz Ghuloum

Indiana University
aghuloum@cs.indiana.edu

R. Kent Dybvig

Indiana University
dyb@cs.indiana.edu

Abstract
The Revised6 Report on Scheme introduces three fun-
damental changes involving Scheme’s recursive vari-
able binding constructs. First, it standardizes the se-
quential recursive binding construct, letrec*, which
evaluates its initialization expressions in a strict left-
to-right order. Second, it specifies that internal and li-
brary definitions have letrec* semantics. Third, it
prohibits programs from invoking the continuation of
a letrec or letrec* init expression more than once.
The first two changes increase the incentive for han-
dling letrec* efficiently, while the third change gives
the compiler more options for transforming letrec
and letrec* expressions.

This paper extends an earlier effort of Waddell,
Sarkar, and Dybvig to handle the Revised5 Report
letrec and the (then nonstandard) letrec* effi-
ciently. It presents more aggressive transformations for
letrec and letrec* that take advantage of the new
prohibition on invoking the continuations of initializa-
tion expressions multiple times. The implementation
employs Tarjan’s algorithm for finding strongly con-
nected components in a graph that encodes the depen-
dencies among the bindings.

Keywords Scheme, recursive binding construct, in-
ternal definitions, mutual recursion, mutual definition,
continuations, optimization, letrec

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

1. Introduction
Scheme’s letrec form, used to create recursive bind-
ings, is easily transformed into a standard combina-
tion of let and set! expressions [4]. Unfortunately,
the standard transformation introduces unnecessary as-
signments that may inhibit subsequent optimization of
the form. An alternative transformation is described
by Waddell, Sarkar, and Dybvig [9]. This transforma-
tion often succeeds in avoiding unnecessary assign-
ments while maintaining the Revised5 Report seman-
tics for letrec. Waddell, et al., also define a variant
of letrec, called letrec* by analogy to let*, that
evaluates its initialization expressions from left to right,
and they present a similar optimizing transformation
for letrec*.

The Revised6 Report on Scheme [5] changes the
status quo by including letrec* as well as letrec
in the language and, more importantly, by changing
the semantics of internal defines so that define-bound
variables behave as if bound by letrec* rather than
letrec. An immediate consequence of this changes
is that R6RS programs (on average) will contain more
variables bound according to the letrec* semantics.
Thus, optimizing letrec* has become even more im-
portant. Over time, we also expect programmers to
take advantage of this change by using the values of
earlier bindings for the purpose of initializing subse-
quent ones. Unfortunately, this will result in more of
the so-called complex bindings for which the Waddell,
et al., transformation, like the naive transformation, of-
ten produces unnecessary assignments.

The Revised6 Report makes one other semantic
change in its recursive binding constructs, which is to
prohibit programs from invoking the continuation of a
letrec or letrec* init expression more than once.
This gives the implementation more flexibility to avoid
producing assignments whose absence could otherwise

57

have been detected by invoking the continuation of an
initialization expression multiple times.

This paper presents a new transformation algorithm
that often produces fewer assignments than the Wad-
dell, et al., transformation, especially for letrec*. At
worst, it produces the same number of assignments as
the Waddell, et al., transformation. It accomplishes this
by an aggressive partitioning of bindings into mini-
mal mutually dependent groups, aided by Tarjan’s al-
gorithm [6] for finding strongly connected components,
and by taking advantage of the new prohibition against
invoking the continuations of initialization expressions
multiple times.

The rest of this paper is organized as follows. Sec-
tion 2 gives an overview of the syntax and semantics
of Scheme’s letrec and letrec* forms along with
the run-time restrictions imposed by the standard. Sec-
tion 3 gives the naive but straightforward implementa-
tion of these forms based on source-level macro trans-
formation. Section 4 summarizes the fixing letrec al-
gorithm of Waddell, Sarkar, and Dybvig [9]. Section 5
motivates our work by showing simple examples where
the original algorithm yields undesirable results. Sec-
tion 6 describes the constraints that our transformation
must follow, the analysis it requires, and how it encodes
the information it needs in a graph form. Section 7
shows how the algorithm uses the strongly connected-
components to perform the actual transformation. Fi-
nally, Section 8 provides some concluding remarks.

2. Semantics of letrec and letrec*

The syntax of the letrec and letrec* forms are
identical, except for the opening keyword:

(letrec ([var init] . . .) body . . .)

(letrec* ([var init] . . .) body . . .)

The lexical scoping rules for letrec and letrec* are
the same: all of vars are visible in all init expressions
as well as in the body definitions and expressions. For
both forms, evaluation proceeds as follows:

1. All vars are bound to fresh locations.
2. The init expressions are evaluated and the value of

each init is assigned to the corresponding var .
3. The body is evaluated and the values of the last

expression are returned.

The two forms differ in the specifics of item 2. For
letrec, all init expressions are evaluated first, in some

unspecified order, before all bindings are initialized to
the computed values. For letrec*, the bindings are
initialized sequentially: each init is evaluated, and the
corresponding var is set before the next binding is
initialized.

2.1 Restrictions
Although all vars are visible in all init expressions,
the actual evaluation of the init expressions must obey
additional restrictions. For letrec, each init expres-
sion must evaluate without referencing or assigning
the value of any of the vars. During the evaluation of
letrec* init expressions, however, references and as-
signments to previously initialized bindings (e.g., ones
that appear earlier in the list of bindings) are permit-
ted. The R6RS requires that implementations must de-
tect and report violations of this restriction [5], though
some implementations currently ignore this require-
ment.

The R6RS also prohibits programs from invoking
the continuation (returning from the evaluation) of an
init expression. The report specifies that implemen-
tation should detect and report such violations. Thus,
portable programs cannot depend on the implementa-
tion’s behavior when the program violates this prohibi-
tion.

Implementations can enforce both of these restric-
tions via a source code transformation that inserts ad-
ditional checks.

A transformation that guards against the first restric-
tion with minimal overhead is described by Waddell, et
al. [9]. The transformation works as a pre-pass to the
fixing letrec algorithm. It first inserts validity checks
amounting to binding one initialized? variable per
letrec expression, or one per letrec* binding, and
inserting validity checks anywhere a possible violation
of the restriction might occur. Because these checks are
separate from the actual letrec or letrec* bindings,
the transformation does not inhibit optimizations in-
volving the bindings. Because it works independently,
as a prepass, of the transformation of letrec and
letrec* into more primitive forms, it is applicable
regardless of the transformation used, whether it be the
naive transformation, the one described by Waddell, et
al., or the more sophisticated transformation described
in this paper.

To enforce the second restriction, an implementation
can transform an unchecked letrec or letrec* ex-

58 Scheme and Functional Programming, 2009

pression into a checked one via a simple transforma-
tion:

(define-syntax checked-letrec
(syntax-rules ()

[(_ ([var init] ...) b b* ...)
(letrec ([var (once init)] ...)

b b* ...)]))

where once is a primitive keyword that behaves ac-
cording to the following definition:

(define-syntax once
(syntax-rules ()

[(_ expr)
(let ([returned? #f])
(let ([v expr])

(when returned?
(assertion-violation ---))

(set! returned? #t)
v))]))

The once wrapper should be omitted at least for init
expressions that cannot possibly invoke their continu-
ations multiple times, including constants, lambda ex-
pressions, variable references, and applications of most
primitives to simple values. An implementation might
also attempt to omit the once wrapper for other ex-
pressions it can prove do not invoke their continuations
multiple times.

The remainder of this paper assumes that all uses
of letrec and letrec* are either correct (i.e, do not
violate the two restrictions of the report stated above)
or that the required checks have already been inserted
by a prior transformation.

3. Naive letrec / letrec* transformation
The task of the fixing letrec pass of the compiler is
to rewrite the general Scheme letrec and letrec*
forms into simpler forms that subsequent passes of the
compiler can easily handle.

The simplest (and most naive) transformation for
letrec* can be achieved at the source level via a
simple macro:

(define-syntax letrec*
(syntax-rules ()

[(_ ([var init] ...) b b* ...)
(let ([var #f] ...)
(set! var init) ...
(let () b b* ...))]))

It is easy to see how the output of this transformation
performs the required letrec* evaluation semantics.
(It enforces none of the restrictions, but we are assum-
ing these are enforced by some earlier transformation.)
The same transformation can be used for letrec ex-
pressions, but it unnecessarily forces the initialization
expressions to be evaluated from left to right, prevent-
ing the compiler from subsequently choosing a differ-
ent order that might result in more efficient code. The
following definition of letrec avoids specifying a par-
ticular evaluation order:

(define-syntax letrec
(lambda (stx)
(syntax-case stx ()

[(_ ([var init] ...) b b* ...)
(with-syntax ([(tmp ...)

(generate-temporaries
#’(var ...))])

#’(let ([var #f] ...)
(let ([tmp init] ...)

(set! var tmp) ...
(values))

(let () b b* ...)))])))

These naive transformations have two unfortunate con-
sequences. First, the compiler cannot always “undo”
the transformation since the resulting code overspeci-
fies the intended behavior. That is, the compiler can-
not tell whether the resulting code is intended to be-
have according to the letrec / letrec* semantics,
or whether it really means binding some variables to
a constant (#f) followed by assigning these variables
to some other values. Second, some optimizing com-
pilers of Scheme cannot handle assigned variables as
efficiently as unassigned ones. In addition to inhibit-
ing inlining, copy-propagation, constant folding, direct
jumps to local procedures, and other optimizations, as-
signed variables often end up being boxed in heap-
allocated locations [1], thus introduce additional run-
time overhead for heap overflow checks when the bind-
ings are introduced, additional memory traffic when the
bindings are used, and possibly additional garbage col-
lection overhead.

4. Waddell’s letrec transformation
The Waddell, et al., algorithm for fixing letrec works
by transforming a letrec expression into a set of let
and fix binding forms. The fix binding form is a

Scheme and Functional Programming, 2009 59

restricted form of letrec in which all bound vars are
unassigned and all inits are lambda expressions. The
transformation partitions the letrec bindings into four
sets:

1. [xu eu] ... unreferenced
2. [xs es] ... simple
3. [xl el] ... lambda
4. [xc ec] ... complex

Unreferenced bindings are those evaluated for effect
only: their computed values are never used in the pro-
gram. Bindings that are unreferenced in the program
are eliminated as are assignments to these unreferenced
bindings. The simple bindings are those satisfying the
following criteria: (1) the var is unassigned, (2) the
init is not a lambda expression and does not contain
a reference to any var bound in the same letrec,
and (3) evaluating its init expression cannot capture
and invoke its continuation more than once. (In R5RS
Scheme, an initialization expression is permitted to in-
voke its continuation more than once, but expressions
that do are not considered simple.) The lambda bind-
ings set contains the bindings where the var is unas-
signed and the init is a lambda expression. The lambda
bindings are bound using fix in the output of the trans-
formation. All other bindings are considered complex.

After partitioning the bindings, a letrec expression
is transformed to:

(let ([xs es] ... ; simple bindings
[xc #f] ...) ; complex bindings

(fix ([xl el] ...) ; lambda bindings
eu ... ; unreferenced
(let ([xt ec] ...) ; complex values
(set! xc xt) ...)

body))

with the inner let expression omitted if no bindings
are complex.

For letrec*, the bindings are similarly partitioned
into unreferenced, simple, lambda, and complex bind-
ings following the same criteria used for letrec ex-
pressions. The only difference in the transformation is
that the unreferenced init expressions and the assign-
ments to complex bindings must be interleaved in order
to preserve the left-to-right evaluation order required
for letrec*. Assuming no unreferenced bindings, a
letrec* expression is transformed to:

(let ([xs es] ... ; simple bindings
[xc #f] ...) ; complex bindings

(fix ([xl el] ...) ; lambda bindings
(set! xc ec) ... ; complex inits
body))

Because some expressions considered simple for pur-
poses of the letrec transformation might raise ex-
ceptions or perform side effects, the rules for simple
expressions given above are too liberal to preserve
the strict left-to-right evaluation order constraint for
letrec* initialization expression. Thus, the Waddell,
et al., transformation treats as complex any otherwise
simple binding whose right-hand side is not effect
free” [9]. For example, the expression (car x) is not
considered simple for purposes of the letrec* trans-
formation, since the car procedure may raise an excep-
tion if x is not a pair. In general, an expression cannot
be considered effect free if it modifies state, exits from
the program, raises an exception, or might not termi-
nate. This has the unfortunate consequence of making
many bindings complex, leading to all the drawbacks
of assigned variables mentioned earlier. To be effective,
fixing letrec should have a better story for handling such
init expressions than to treat them as complex.

5. Why does it matter?
Consider the following simple program fragment:

(let ()
(define q 8)
(define f (lambda (x) (+ x q)))
(define r (f q))
(define s (+ r (f 2)))
(define g (lambda () (+ r s)))
(define t (g))
t)

which should be understood in terms of a straightfor-
ward transliteration into letrec*, with the bindings
appearing in the same order.

According to the Waddell, et al., partitioning algo-
rithm, the binding for q is considered simple, the bind-
ings for f and g are lambda, and the bindings for r, s,
and t are complex. After fixing letrec, the code is trans-
formed to:

(let ([q 8])
(let ([r #f] [s #f] [t #f])

(fix ([f (lambda (x) (+ x q))]

60 Scheme and Functional Programming, 2009

[g (lambda () (+ r s))])
(set! r (f q))
(set! s (+ r (f 2)))
(set! t (g))
t)))

Because the variables q, f, and g are unassigned, they
are straightforward targets for inlining, copy propaga-
tion, and other optimizations performed by a source op-
timizer such as the one described by Waddell and Dy-
bvig [7, 8]. The assigned variables r, s, and t are not,
so the resulting code after optimization might look like
the following less-than-ideal code:

(let ([t #f] [s #f] [r #f])
(set! r 16)
(set! s (+ 10 r))
(set! t (+ r s))
t)

Compare this with the following program, which at the
source level appears less efficient as it contains several
more lambda expressions and procedure calls:

(let ()
(define q (lambda () 8))
(define f (lambda (x) (+ x (q))))
(define r (lambda () (f (q))))
(define s (lambda () (+ (r) (f 2))))
(define g (lambda () (+ (r) (s))))
(define t (lambda () (g)))
(t))

It is discomforting and counterintuitive that the Wad-
dell and Dybvig source optimizer boils this down to just
the constant “42” while the simpler program shown at
the beginning of this section does not, all because the
letrec* transformation produces unnecessary assign-
ments.

The goal of an efficient letrec and letrec* trans-
formation is to reduce the number of emitted variable
assignments (set!s) by turning as many of the bind-
ings into simple let or fix bindings as possible. The
original fixing letrec algorithm fails to do so, in essence,
because it assumes that all of the bindings are possibly
mutually dependent and thus must be grouped together
in the output.

The new algorithm removes this restriction by group-
ing a set of bindings together only if they are mutually
dependent. It can thus handle each nonrecursive com-
plex binding in a group by itself without introducing

an assignment. For example, it transforms the program
given above into the following assignment-free pro-
gram:

(let ([q 8])
(fix ([f (lambda (x) (+ x q))])

(let ([r (f q)])
(let ([s (+ r (f 2))])
(fix ([g (lambda () (+ r s))])

(let ([t (g)])
t))))))

6. Constraints, analysis, and encoding
Ideally, the transformation would place each letrec
or letrec* binding in its own let or fix expression,
each nested inside the previous ones, and so avoid all
assignments. It cannot do so, however, due to semantic
constraints that must be obeyed in order to handle the
full generality of letrec and letrec*.

6.1 Constraints due to lexical scope
The lexical scope rule for let bindings requires that the
right-hand-side expressions cannot reference any of the
left-hand-side variables or any variables not bound in
an outer scope. So, if x and y are two letrec bindings,
we cannot place x in an outer let to y if x’s init
expression refers to y.

The lexical scope rule for fix bindings allows for
mutual recursion among lambda expressions: the vari-
ables at the left-hand-side can appear at the right-hand-
side lambda expressions as well as in the fix body.
Consider the following example:

(let ()
(define f (lambda () (even? 5)))
(define even?

(lambda (x)
(or (zero? x) (odd? (- x 1)))))

(define odd?
(lambda (x) (not (even? x))))

(define t (f))
t)

Because even? and odd? are mutually recursive, they
must be bound by the same fix. The procedure f refer-
ences even?, but neither even? nor odd? references f,
so f is placed in an inner fix. (Since it is nonrecursive,
it could be bound by let instead, but we bind it using
fix to facilitate a later, independent transformation that
combines nested fix expressions to simplify the block

Scheme and Functional Programming, 2009 61

allocation and wiring together of procedures.) The vari-
able binding t is placed inside the binding for f since
it references f, and none of the other bindings refer-
ence it. The final product of the transformation shows
the effect of scoping constraints on the output of the
transformation.

(fix ([even? (lambda (x) --- odd? ---)]
[odd? (lambda (x) --- even? ---)])

(fix ([f (lambda () (even? 5))])
(let ([t (f)])
t)))

The transformation cannot transform all letrec and
letrec* forms into arbitrarily nested let and fix
bindings and thus avoid ever producing an assignment.
For example, the program

(letrec ([x (list (lambda () x))]) x)

necessarily requires the introduction of an assignment
to establish the cyclic relationship between the proce-
dure and the pair. It is thus transformed into the follow-
ing equivalent program

(let ([x #f])
(set! x (list (lambda () x)))
x)

Similarly, an assignment may be introduced for more
than one recursively defined nonprocedure binding. In
the following example, x and y are mutually recursive
nonprocedure bindings, both requiring an assignment.
The binding for f refers to both x and y but it can
appear in an inner binding because neither x nor y
refers to it.

(let ()
(define x (list (lambda () y)))
(define f (lambda () (cons x y)))
(define y (list (lambda () x)))
(define t (f))
t)

=>
(let ([x #f] [y #f])
(fix ([f (lambda () (cons x y))])

(set! x (list (lambda () y)))
(set! y (list (lambda () x)))
(let ([t (f)])
t)))

If the initialization expressions for two complex bind-
ings are not mutually recursive, however, the assign-
ments can be avoided. For example, assuming x, f, and
g are defined outside of the following expression and
both y and z are referenced within body:

(let ()
(define y (f x))
(define z (g x))
body)

is transformed into the following.

(let ([y (f x)])
(let ([z (g x)])

body))

This transformation would also be valid for the equiv-
alent letrec expression, with the R6RS semantics. It
would not be valid for internal defines following the
R5RS letrec semantics, however, since a continua-
tion catpured by f might be invoked multiple times,
each causing a new location for z to be created, pos-
sibly holding a different value each time.

6.2 Constraints due to evaluation order
For letrec* (but not for letrec), an additional con-
straint on the transformation is forced by the require-
ment that the init expressions be evaluated sequentially
from left to right. Evaluating an init expression may,
however, cause side effects. The letrec* transforma-
tion therefore must preserve the order of observable
side effects in the init expressions as they appear in
the input program.

Whether an init expression causes an observable
side effect is undecidable in general, so the analysis
to determine whether it does so must be conservative.
Our current implementation considers an init expres-
sion to have a side effect if it contains a procedure call
or a set! expression occurring outside of a lambda
expression. This gives the implementation the freedom
to reorder the simple bindings comprising of constants,
variable references, primitive references, lambda ex-
pressions, and the combination of simple expressions to
form certain primitive calls, if, begin, let, letrec,
and letrec* expressions.

6.3 Viewing constraints as a dependency graph
The first part of our algorithm works by encoding each
letrec and letrec* instance as a directed graph G

62 Scheme and Functional Programming, 2009

in which the nodes are the set of vars and the arcs
represent the dependencies between bindings.

The dependencies are derived from the lexical scope
and (for letrec*) evaluation order constraints and
control the overall structure of the result of the trans-
formation. For example, the lexical scope rule dictates
that at the output of the transformation, an init in an
outer let or fix binding must not reference a vari-
able placed in an inner binding. Or, stated differently,
if xi appears free in some init j expression, xi has to be
bound before (or at the same time) init j is evaluated
but not later. Thus, the binding for xj is said to depend
on the binding for xi as in the following definition:

Dependency graph for letrec:
Given a set of bindings {〈xi, init i〉∗}, the dependency
graph is G = 〈V,E〉 where

V = {xi∗} and
E = {(xj , xi) : xi ∈ FV (init j)}.

Constraints due to the specified evaluation order for
letrec* are encoded in a similar fashion. If two init
expressions might perform observable side effects,
their order must be preserved in the output of the trans-
formation. Thus, the edges of the dependency graph for
letrec* must contain an arc xj → xi if init j must be
evaluated after init i.

Dependency graph for letrec*:
Augments the edges of the corresponding letrec
graph with the set
{(xj , xi) : init j and init i are complex and j > i}.

Dependencies are transitive, e.g., if (xi, xj) ∈ E and
(xj , xk) ∈ E, then (xi, xk) ∈ E and thus need not be
encoded explicitly. In fact, our implementation adds at
most N − 1 order-of-evaluation edges for a letrec*
containing N bindings and not the O(N2) edges re-
quired if all pairs of dependent bindings are connected.

The dependency graphs for the programs presented
so far are shown in figure 1. It is instructive to compare
each dependency graph with the corresponding code
after transformation.

6.4 Strongly connected components
Once the dependencies among bindings are deter-
mined, the resulting graph is partitioned into strongly

q

f

r

s

g

t

e o

f

t

y x

f

t

Figure 1. The dependency graphs for the first three
source programs shown in Section 6. The left-most
graph is for the program at the beginning of Section 5.
The two shorter graphs are for 6.1 and 6.2. The edges in
these graphs record the constraints due to lexical scope
and evaluation order.

connected components (SCCs) using Tarjan’s algo-
rithm [6]. An SCC in G is the largest subgraph of G
in which every node is reachable when starting from
every other node in the SCC.

The Tarjan algorithm works by visiting all reachable
nodes starting from some node xs, in a depth-first-order
traversal, ranking each node with its depth of traversal,
and combining cycles as they are encountered.

In its simplest case, an SCC contains just a single
node (which may or may not be pointing back to itself).
If an SCC contains more than one node, these nodes are
mutually dependent, either because they are mutually
recursive or because one node references another that
must follow it in the left-to-right evaluation order of
letrec*.

The arcs of G not only determine the set of SCCs
but also defines a partial order relation on the SCCs.
Our implementation of Tarjan’s algorithm returns an
ordered list of SCCs such that SCCi does not depend
upon SCCj if i < j, but SCCj might depend on SCCi.

7. Transformation based on SCCs
The letrec and letrec* transformation partitions the
set of bindings into strongly connected components.

Scheme and Functional Programming, 2009 63

We only need to consider how to generate code for a
single SCC. This is because the list of SCCs obtained
from the Tarjan algorithm is ordered according to the
required dependencies, so the bindings for each SCC
need merely be nested within the bindings for previous
SCCs.

Each SCC is handled in a manner similar to the way
the Waddell, et al., transformation handles the entire
set of letrec and letrec* bindings, except that we
treat specially the case where an SCC contains only one
binding.

Single bindings: Code generation for an SCC con-
taining a single binding 〈var , init〉 is handled accord-
ing to one of the following cases:

– If init is a lambda, and var is unassigned:
(fix ([var init]) rest)

– If var /∈ FV (init):
(let ([var init]) rest)

– Otherwise, we resort to assignment:
(let ([var #f])

(set! var init)
rest)

The rest code in the transformation denotes the code
for subsequent SCCs and the transformed body expres-
sion.

Multiple bindings Code generation for an SCC con-
taining multiple bindings is done by partitioning the
bindings into two parts:

1. 〈varλ, initλ〉 if init is a lambda expression and var
is unassigned.

2. 〈varc , initc〉 otherwise.

Tarjan’s algorithm does not guarantee an order of re-
turned elements for each SCC, so, for letrec*, the
complex bindings need to be sorted according to their
occurrence in the original letrec* form. The two par-
titions are used to produce the following code:

(let ([var c #f] . . .)
(fix ([varλ initλ] . . .)

(set! var c initc) . . .
rest))

The graphs shown in Figure 1 tell the whole story. The
first graph shows a long chain of dependencies, but all
SCCs are of size 1. This is why the transformed code

(shown at the end of Section 5) has a deeply nested let
and fix forms, each binding a single variable. The sec-
ond graph (the even?/odd? example) shows two mu-
tually recursive bindings in one SCC (producing a fix
binding in the output) and two singleton SCCs (produc-
ing two let bindings). The last graph also shows an
SCC with two bindings, but this time, x and y cannot
be bound with fix, and thus an assignment is needed.

8. Conclusions
The letrec and letrec* transformation algorithm
described in this paper improves on the handling of
letrec and letrec* by Waddell, et al. [9], by pro-
ducing fewer assignments, thus reducing direct over-
head from assignments as well as the indirect overhead
from the inhibition of certain optimizations. Each bind-
ing that would be considered simple by the Waddell,
et al., transformation ends up in its own SCC. Since
simple bindings cannot reference any of the left-hand-
side variables, they are handled by the second single-
binding case above, i.e., they are bound by let ex-
pressions. Similarly, all lambda bindings end up bound
by fix expressions. The difference between the Wad-
dell, et al., transformation and ours is in the treat-
ment of bindings the former considers complex. While
the Waddell, et al., transformation always introduces
assignments for complex bindings, our transformation
avoids assignments for those that are nonrecursive and
end up in their own SCC, which appears in our ini-
tial experiments to be by far the most common case.
For letrec*, some apparently simple bindings must be
considered complex, such as primitive calls that might
raise exceptions, so this improvement is particularly
important for R6RS, which employs letrec* seman-
tics for internal definitions.

We have implemented the original and new algo-
rithms and wired them into the Ikarus [3] and Chez
Scheme [2] compilers, with a parameter to select which
algorithm to run. Using both systems, we compared
the effectiveness of the two algorithms in eliminat-
ing complex bindings while bootstrapping the compiler
and run-time libraries, which for both systems involves
thousands of letrec or letrec* bindings. 10% of
Ikarus’s bindings and 7.2% of Chez Scheme’s bindings
are considered complex by the original algorithm ver-
sus only .6% and .1% for the new. Thus, in both sys-
tems, the complex bindings are a substantial fraction of

64 Scheme and Functional Programming, 2009

all letrec/letrec* bindings using the original algo-
rithm, but an insignificant fraction using the new.

Although the bootstrapping times for Ikarus improve
by just under 11% when switching from the original
to new algorithms, the bootstrapping times for Chez
Scheme do not improve significantly. This is likely
due, in part, to the fact that most of the code that af-
fects Chez Scheme’s compile-time was written before
letrec* was introduced and internal definitions were
changed to use letrec* semantics. Furthermore, most
of the code was developed with an even less effective
algorithm for handling letrec than the Waddell, et
al., algorithm, and this has caused the developers to
shy away from potentially complex bindings in time-
critical portions of the system.

Based partly on our experience, we believe that pro-
grammers will take advantage of the letrec* seman-
tics for internal definitions, especially with the knowl-
edge that letrec* can be implemented effectively, and
that the improvement afforded by the new transforma-
tion will become increasingly more valuable over time.
It will be interesting to test this hypothesis once a large
corpus of programs written specifically for R6RS be-
comes available.

Acknowledgments
We thank the reviewers for their helpful comments and
suggestions.

Implementation
The transformation presented in this paper is im-
plemented in Ikarus Scheme. As of revision 1825,
the implementation is in the file ikarus.compiler
.optimize-letrec.ss. The current source code can
be viewed online at http://ikarus-scheme.org/
optimize-letrec.html.

References
[1] R. Kent Dybvig. Three Implementation Models for

Scheme. PhD thesis, University of North Carolina,
Chapel Hill, April 1987.

[2] R. Kent Dybvig. Chez Scheme Version 7 User’s Guide.
Cadence Research Systems, 2005.

[3] Abdulaziz Ghuloum. Ikarus Scheme User’s Guide,
2009.

[4] Richard Kelsey, William Clinger, and Jonathan Rees
(Editors). Revised5 report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998.

[5] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and
Anton van Straaten (editors). Revised6 report on the
algorithmic language Scheme. 2007.

[6] Robert Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1(2):146–
160, 1972.

[7] Oscar Waddell. Extending the Scope of Syntactic
Abstraction. PhD thesis, Indiana University Computer
Science Department, August 1999.

[8] Oscar Waddell and R. Kent Dybvig. Extending the scope
of syntactic abstraction. In Conference Record of POPL
99: The 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Antonio,
Texas, pages 203–213, New York, NY, 1999.

[9] Oscar Waddell, Dipanwita Sarkar, and R. Kent Dybvig.
Fixing letrec: A faithful yet efficient implementation of
Scheme’s recursive binding construct. Higher-Order
and Symbolic Computation, 18(3-4):299–326, 2005.

Scheme and Functional Programming, 2009 65

The Scribble Reader
An Alternative to S-expressions for Textual Content

Eli Barzilay
Northeastern University

eli@barzilay.org

Abstract
For decades, S-expressions have been one of the fundamental ad-
vantages of languages in the Lisp family — a major factor in shap-
ing these languages as an ideal platform for symbolic computa-
tions, from macros and meta-programming to symbolic data ex-
change and much more. As convenient as this minimalist syntax
has proven to be, it is unfitting for dealing with textual content.
In this paper we describe the reader used by Scribble — the PLT
Scheme documentation system. The reader implements a syntax
that is easy to use, uniform, and it meshes well with the Scheme
philosophy. The syntax makes “here-strings” and string interpola-
tion easy, yet it is more powerful than a combination of the two.

1. Introduction
In Scheme, textual content comes in the form of plain old double-
quoted strings, with simple backslash escapes. Dealing with rich
textual content is possible, but highly inconvenient to the point
of making such kind of programing nearly impractical. Writing
a complete textual document in plain Scheme syntax is possibly
more difficult than implementing a symbolic interpreter in Fortran.
In contrast, practically all modern languages come with a variety
of tools that promote textual content: multiple kinds of string quo-
tations, “here-strings” (also called “here-documents”), and string
interpolation syntax. In this regard, Scheme is severely lagging be-
hind the times.

The convenience that comes with these tools is more than a
mere technicality; it is important for enabling textual computing
in much the same way that S-expressions, quotes, and quasiquotes
in Scheme enable symbolic computing. Neither of these facili-
ties is required, yet without them, textual manipulation and sym-
bolic programming becomes a hair-pulling experience. Being
limited to Scheme strings means that all text must be modified
by escaping double quotes and backslashes (a major hassle for
text that has Scheme code in it), and to mix text and code, we
need to split the text into separate strings, then recombine them
with string-append — making this quite similar in nature to
an implementation of meta-programming when all you have is
make-symbol and make-pair.

In PLT Scheme, we have designed a new concrete syntax to
address the problem of textual content. This is implemented as a

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

reader macro that is used as part of the Scribble documentation
system[5]. The new syntax is similar in spirit to S-expressions,
and indeed it is both elegant and useful in a similar way. At the
conceptual level, the syntax builds on a similar uniformity to that
of S-expressions — the result is even more convenient and general
than popular textual facilities, specifically, both here-strings and
string interpolation are achieved in a nearly trivial way. The new
syntax has proven itself in a massive migration of thousands of
documentation pages from a messy LATEXbased system to Scribble,
extending it with much more text, and the result is higher quality
renderings, with much improved utility to end users.

An additional similarity with S-expressions is in the syntax’s
versatility and independent utility: the Scribble syntax is useful in
many textual contexts, going well beyond “a documentation lan-
guage”; parallel to the utility of S-expressions for many tasks that
revolve around symbolic computations and more. It is essentially
an alternative S-expression “skin” that can ease textual applications
at the concrete syntax level while keeping the usual Scheme flexi-
bility. As a matter of fact, this approach can be used to extend any
language, it is the conceptual approach and the use of S-expressions
that makes it particularly fitting for Scheme.

In short, the Scribble syntax, not only brings PLT Scheme up
to speed with respect to textual programming: it provides it with
the same edge that Scheme always had with respect to symbolic
programming.

The Scribble syntax was not made up in a vacuum; various
Scheme implementations have come up with a few solutions to
varying degrees of completeness. Indeed, PLT Scheme itself has
SCSH-style “here-strings”[10], two different preprocessor tools, a
PLaneT library for string interpolation, and all of these come in
addition to a decade-long sequence of various experiments with
syntaxes in trying to find a good solution.

Many Scheme implementations provide a readtable-like facility
for extending their concrete syntax, and can therefore implement
the Scribble extensions conveniently and achieve the same benefits.
Moreover, if adopted by more implementations, these benefits can
carry to the Scheme community as a whole.

2. Scribble Syntax by Example
In this section we present the Scribble syntax through a not-so-short
sequence of examples. As usual with readtable-based parsers, the
syntax is hooked onto a “reader macro” character, which makes it
an extension of the existing S-expression reader — and allowing
a natural mix of Scheme code in both S-expression and Scribble
syntax, as well as making the implementation relatively simple by
localizing the required extension rather than requiring a completely
new parser.

66

2.1 Basic @-Expressions
Scribble forms are often called @-expressions or @-forms because
they begin with a @ character. Embedded in Scheme code, a simple
@-expression can look as follows:

(define (greetings) @list{Hello, world!})

Following the @, the reader proceeds to read list as a Scheme
identifier, and any text that appears within the following curly
braces gets parsed as a sequence of Scheme strings, and finally the
identifier and the strings are wrapped in a list. We can use the fact
that this is an extension of the Scheme reader, and inspect how it
parses an @-form using quote1:

> ’(define (greetings) @list{Hello, world!})
(define (greetings) (list "Hello, world!"))

The @ character was chosen by counting the frequency of the
first character used for symbols in the complete PLT code-base,
and choosing the least frequent one. Another (unexpected) advan-
tage of @ is that it is illegal to start an identifier with it according
to the R6RS[11] standard. The Scheme reader is extended by in-
troducing @ as a “non-breaking” reader macro character, so less
code may be broken when switching to it (i.e., a @ inside an identi-
fier has no special meaning). In the rare case where @ is needed at
the beginning of a symbol, PLT Scheme’s escape conventions for
symbols (also used by several other implementations) can be used
— for example, \@foo and |@foo| are plain Scheme identifiers.
This is a direct benefit of using a readtable extension: these escapes
mean that the Scribble reader will never see these symbols.

Reading @-forms as plain S-expressions is crucial to the utility
of the Scribble syntax. It allows us to leave the meaning of these
expressions to the usual Scheme semantics — using any kind of
bindings: existing or imported, procedures or macros.

> @display{Hello, world!}
Hello, world!
> (define (greet str) (printf "Hello, ~a!\n" str))
> @greet{world}
Hello, world!

The textual content of an @-expression is nearly free-form text.
It can have newlines, double and single quotes, backslashes, etc.
The S-expression that it parses to will have a number of strings:
usually one string per line and one for each newline. The indenta-
tion of the whole form is ignored, but indentation inside the form is
preserved and is parsed as a separate string of spaces.

> ’@string-append{Backslashes escape quotes:
"x\"y"}

(string-append "Backslashes escape quotes:" "\n" "\"x\\\"y\"")
> ’@string-append{1. First

- sub
2. Second}

(string-append "1. First" "\n" " " "- sub" "\n" "2. Second")

This makes @-forms extremely convenient for common tasks where
text contains code snippets. In almost all case, the author only needs
to deal with forms (function applications, macros, or quoted lists)
that have multiple strings as a “textual body”.

> (define (show . strings)
(for-each display strings))

> @show{(define (show . strings)
(for-each display strings))}

(define (show . strings)
(for-each display strings))

The reason for separating the text into separate strings for newlines
and indentation is that in some cases it is useful to process the
text based on them. We also use syntax properties (a PLT Scheme

1 To try these examples in a DrScheme or MzScheme REPL, en-
able the Scribble reader with (require scribble/reader) and
(use-at-readtable).

feature) that contain additional information, making it possible to
know the precise original syntax. In some rather rare cases where
this is needed, this information can be used by macros2.

Several subtle yet important decisions are made here. Ignoring
the indentation of an @-forms makes it possible to preserve the
indentation structure of Scribble-extended Scheme code, a price-
less feature for Schemers. In fact, the “overly verbatim” nature of
Scheme strings and popular here-string syntaxes greatly reduces
their popularity, and indeed, they are mostly used only in toplevel
positions, and still, Schemers often prefer string-append to pre-
serve the textual layout of their code. The importance of preserving
this textual layout leads to another feature of the Scribble reader: a
newline that begins the textual body or one that ends it are ignored
if the body contains text. If the body contains no text, then it is
assumed that the newlines are all intentional.

> @list{
blah blah blah

}
("blah blah blah")
> @list{

}
("\n")
> @list{

blah

}
("\n" "blah" "\n")

This decision is a typical case that demonstrates an important prin-
ciple of the Scribble syntax design: it should be convenient and
natural to use for humans authors facing tasks that involve writing
text in code. This stands in contrast to plain Scheme strings, where
uniformity and terseness is strongly favored over convenience. (It is
also interesting to compare this with textual quotations in modern
languages.) Obviously, there is an important tradeoff here: unifor-
mity and terseness are important for any feature of a programming
language, even more so for its concrete syntax. As a result, design-
ing the Scribble syntax has been a tedious experience of finding the
golden line between uniformity and convenience3.

The issue of indentation demonstrate this tension in two addi-
tional decisions. First, the indentation of a whole @-form is ignored,
but what if after the opening brace there are some spaces and then
text? In this case, the assumption is that the spaces are intentional,
and they are not ignored. Second, when @-forms are used as markup
language, a textual body might be outdented relative to the first
line, to avoid disturbing the flow of text. A simple solution to both
of these issues is to simply ignore any text that follows the opening
brace when determining the indentation of the whole @-expression.

> @list{ One
Two}

(" One" "\n" " " "Two")
> @list{This sentence is split

across two lines.}
("This sentence is split" "\n" "across two lines.")

In a similar way to its treatment of indentation, Scribble ignores
spaces at the end of lines — except for spaces right before the
closing brace, if there is text on that line.

> @list{ One
Two }

(" One" "\n" " " "Two ")

2 A macro is required since the source and its properties do not exist at
runtime.
3 There are still a number of corner cases where it is not clear whether the
Scribble syntax has followed the right choice.

Scheme and Functional Programming, 2009 67

2.2 Escapes and “Here Strings”
Clearly, the textual content is not completely free form: it is ter-
minated by a closing brace. However, balanced braces are still al-
lowed. This greatly reduces the need for escaping — most uses of
a textual container that require braces will have balanced braces, so
we favor not requiring escapes for this case over the alternative of
always requiring them, or the asymmetric alternative of requiring
them only for closing braces.

> @list{int add1(int i) {
return i+1;

}}
("int add1(int i) {" "\n" " " "return i+1;" "\n" "}")

Typical cases that require an unbalanced single brace are programs
that construct text programmatically, and for such uses we can still
use conventional Scheme strings. In other words, we choose yet
again the option that has the greater advantage for most texts, over
the more uniform but less convenient alternatives.

Still, we wish for the syntax to be complete and to accommodate
an unbalanced brace in some way when it is needed. A good rule-
of-thumb to see how such a syntax scale is to observe how it handle
reflective texts, for example, writing texts about the system itself4.

A common sequence of events at this point is (a) decide to use
an escape character, (b) go with the familiar backslash, (c) require
backslashes to be escaped too, (d) end up with yet another level
of backslash-escapes. An alternative that we considered is back-
slashes that escape only braces, and otherwise are part of the text:
a sequence of n backslashes followed by a brace would stand for a
text that consists of n − 1 backslashes and the brace, for example
“\{” quotes “{”, and “\\\{” quotes “\\{”. This non-uniform rule
comes at a cost: it is confusing in its non-uniform behavior, and it
is impossible to have a backslash appear before an unescaped brace
(as the last character of a textual body). Regardless of the choice,
an escape character is a poor choice for reflective texts (failing our
rule-of-thumb), and was therefore rejected.

Instead of an escape mechanism, we have turned to a more con-
venient approach that fits cases that call for extra “freedom” in the
text part of an @-expression — a set of alternative delimiters can be
used, making braces lose their special role. Using a different shape
of parentheses, as done in some languages that have both single-
and double-quoted strings, only shifts the problem elsewhere, forc-
ing the author to be aware of the current delimiters. Instead, we
have settled on alternative delimiters that are longer than single
braces: we still use braces (so delimiters still look similar, making
them easy to read and to remember), but the open/close delimiters
we use |{ and }|.

> @list|{ }-{ }|
(" }-{ ")

The vertical bars are not an arbitrary choice: they have a similar
role in delimiting symbols in the PLT Scheme reader, so playing a
similar role here makes this choice more memorable.

Going back to our rule-of-thumb, it becomes apparent that just
a single alternative is insufficient, for example when this alterna-
tive is itself documented. The delimiter syntax is therefore further
generalized to arbitrary user-specified delimiters in a way that is
analogous to here-strings: the opening delimiter can have any se-
quence of punctuation characters (excluding curly braces) between
the vertical bar and the brace, making the expected closing delim-
iter to hold the same sequence (in reversed order, and with reversed
parentheses)5. Using such delimiters makes it possible to have the
text arbitrarily free-form.
4 For example, this paper and the Scribble documentation pages are both
written using the Scribble reader.
5 Alphanumeric characters are forbidden here to avoid mistakes; curly
braces are forbidden to avoid ambiguity; and the reason for reversing paren-

> @show|--<<{Use @foo|{...}| to type free braces}>>--|
Use @foo|{...}| to type free braces

For extreme cases, the Scribble reader is generalized on the
macro character to use. For example, the textual domain might use
@ excessively (e.g., documenting Scribble), or you might want to
intentionally make a syntax that looks like an existing language
(e.g., create a language that is close in its look to LATEX)6. Yet
even with our extensive experience of (re)writing the PLT Scheme
documentation in Scribble, there was no need for this feature. It is
therefore only available through procedures in the reader API that
can construct such custom readers.

Finally, the Scribble syntax has yet another way to locally es-
cape text using the usual Scheme string syntax. This is done by
following a @ with a Scheme string. This can be handy in some dif-
ficult cases, where it is used for very short strings, or when authors
prefer it over using the alternative delimiter syntax.

> @show{An open brace: #\@"{".}
An open brace: #\{.

As we shall see next, this is actually a limited (and slightly modi-
fied) example of nested Scribble forms.

2.3 Nested @-Forms
So far, the Scribble syntax that we have covered serves as only
a convenient alternative to quoting and to “here-strings”. Specifi-
cally, we did not address the problem of combining text and code,
commonly addressed via “string interpolation”. Schemers quickly
recognize string interpolation as similar in nature to quasi-quoting.
In fact, such a facility is sometimes named “quasi-strings”, and im-
plemented as a string-like extension using similar characters.

Our syntax implements a conceptually different solution — a
general approach that is powerful enough to support string inter-
polation as a trivial byproduct. At its core, the basic property of
the Scribble syntax is that @-forms have the same meaning whether
they appear in Scheme code or nested in other @-forms. The di-
rect implication of this principle is simple: if the textual body of an
@-expression has a nested expression, then the nested one is read
recursively, and the resulting expression contains the nested form
among the strings of its textual body, which means that the textual
body of an @-form is no longer just a sequence of strings.

> ’@foo{abc @bar{ijk}
xyz}

(foo "abc " (bar "ijk") "\n" "xyz")

This approach is the primary key to the convenience and flexi-
bility of the Scribble syntax. The first thing to note is a convenience
point: @-expressions preserve their meaning when they move into
and out of other @-expressions. But this is important at a much
more fundamental level: it means that @-expressions follow the
same rules as S-expressions — an occurrence of @foo{...} de-
notes an application of the procedure bound to foo (or a foo macro
form), regardless of where it appears in the code (barring quoted
contexts). This is what makes the Scribble syntax be an alternative
to S-expressions, one that is well suited for textual content — not
just a mere combination of string quotation and unquotation.

> (define mytext @list{A @vector{B} C})
> mytext
("A " #("B") " C")

If this is compared to a conventional string interpolation (using a
fictitious syntax),
theses is to make it more convenient to edit the text and making it fit well
inside the |{. . .}| delimiters
6 To experiment with this, the source of this paper uses a Scribble reader
customized to use a backslash, making the source mostly compatible with
LATEX.

68 Scheme and Functional Programming, 2009

(define mytext (list "A $(vector "B") C"))

several differences become apparent:

• In such mechanisms, the interpolated expressions are expected
to evaluate to a string, or are coerced to a string value, to
keep the value a string. In contrast, nested @-forms can be any
expression and have any kind value.

• This is an indication of a more important difference: in the
string interpolation example, there is no single interpolated
expression — only an interpolated value. To put this in rough
Scheme terms, to get an interpolated expression, we would need
to somehow “expand the string” into a sequence of expressions
that are spliced into the expression that contains the string —
and make sure that such strings always appear in expressions
that expect one or more string values. (This kind of expansion
requires a global transformation, or a kind of a macro expander
that can expand string literals and deals with transformers that
return a to-be-spliced value.)

• Finally, note that the vector expression needs to be escaped,
while the list expression must not be escaped. We therefore need
to be aware of the lexical surrounding of an expression to know
if it should be escaped or not — which can be difficult with
bigger pieces of code, and it therefore encourages restricting
interpolated expressions to relatively small bits. This is similar
in nature to quasi-quoting, where we have a “textual context”
for text, and we can escape out of it back to Scheme code.
This is in sharp contrast to Scribble expressions — which are an
extension of the language rather than just a new kind of context.

Going back to our reader, nested @-forms make perfect sense:
they can be conveniently used with any kind of code, and any kind
of context. We only need to make sure that every @-expression
that we use has a proper binding, and that these bindings expect
a variable number of “textual body” arguments, mostly strings. For
example, a simple adjustment to the previous definition of show
makes the following example work as expected:

> (define (show . text)
(let loop ([x text])

(if (list? x) (for-each loop x) (display x))))
> (define (greet str) (list "Hello, " str "!"))
> @show{Once again: @greet{world}}
Once again: Hello, world!

As the @ character turns into a special character in a textual
body, it is also subjected to the alternative delimiter syntax as the
open and end braces. Specifically, when |{. . .}| are used for a
textual body, then nested expressions should similarly begin with
a |@, and the same goes for the variants with extra punctuations in
the delimiter.

> @list|{123 @vector{456} 789}|
("123 @vector{456} 789")
> @list|{123 |@vector{456} 789}|
("123 " #("456") " 789")
> @show|{@greet{world} --> |@greet{world}}|
@greet{world} --> Hello, world!
> @show|--{@greet|{world}| --> |--@greet|{world}|}--|
@greet|{world}| --> Hello, world!

Note that the nested form determines its own variant of delimiters:
the greet expressions above do not have to use the alternative
delimiters.

At this point the Scribble syntax combines convenient facility
for quoting free-form text, with an extension that addresses the
same kind of problems as string interpolation devices. But it is not
a complete replacement for string interpolation — yet.

2.4 Expression Escapes, String Interpolation
With Scheme S-expressions, parenthesized expressions denote pro-
cedure applications (we ignore macros for now), with the head of
the expression denoting the procedure to apply. Of course, identi-
fiers can appear in places other than the head of a parenthesized
expression, making it a simple reference to a value. The Scrib-
ble syntax builds on S-expressions by reading an @-form as an S-
expression, where the identifier after the @ stands in the “head po-
sition” of the expression, and the following curly braces denote the
(textual body) arguments. It is therefore intuitive to make the Scrib-
ble syntax correspond to S-expressions: if @〈id〉 is not followed by
a curly-braced textual body, then the result of reading the form is
just 〈id〉.

> ’@foo{x @y z}
(foo "x " y " z")
> (define name "earth")
> @show{Using "@name": @greet{@name}}
Using "earth": Hello, earth!

Furthermore, there is no reason to restrict the head part of
an @-expression to identifiers only — it can just as well have
any S-expression. With a textual body, this is equivalent to an
application expression that has an application expression in the
function position.

> ’@(foo){bar}
((foo) "bar")
> @show{I repeat: @(compose greet string-upcase){@name}}
I repeat: Hello, EARTH!

Without a textual body, we get a generic escape for arbitrary
Scheme expressions.

> @show{I repeat: @(greet (string-upcase name))}
I repeat: Hello, EARTH!
> ’@show{1+2 = @(+ 1 2)}
(show "1+2 = " (+ 1 2))
> @show{1+2 = @(+ 1 2)}
1+2 = 3

An interesting result of making the syntax uniform via uses of
the Scheme reader is that the head part of an @-expression can itself
be an @-expression. With an input code of @@foo{bar}{baz},
the Scribble reader gets invoked by the first @, it will then read
the head part for the @-form which is @foo{bar} (resulting in
(foo "bar")), and finally it reads the textual body and constructs
the resulting expression, ((foo "bar") "baz"). In some cases,
this can be useful for procedures that expect more than a single
textual body: write the appropriate curried definition where each
step consumes a “textual body” as a rest argument, and to use it,
specify the right number of @s at the beginning of the @-form.

> (define ((features . pros) . cons)
@list{Pros: @|pros|.

Cons: @|cons|.})
> @show{@@features{good}{bad, ugly}}
Pros: good.
Cons: bad, ugly.

There is a small exception to such Scheme escapes: when the
escaped expression is a literal Scheme string, the string is combined
with the surrounding text rather than become a separate expression.
As discussed above, this allows using the same syntax for escaping
arbitrary text using familiar Scheme quotes.

> @list{1 @2 @"3" 4}
("1 " 2 " 3 4")

This is another case where Scribble favors utility over uniformity.
In general, @-forms are not used when precise control over the num-
ber of arguments is needed — instead, it is used with a sequence
of “textual body arguments”, with functions (or macros) where (f
"x" "yz"), (f "xy" "z"), (f "x" "y" "z"), and (f "xyz")
are all equivalent. Given this, the escaped string exception is both

Scheme and Functional Programming, 2009 69

harmless and redundant; however, it is useful in some cases where
a single string argument is expected, and in cases where it is impor-
tant that a chunk of text be kept as a single string (e.g., when each
string is later post-processed).

Using the Scribble reader’s expression escapes, we can now
get string interpolation as a relatively boring special case of using
@string-append{...} and @-expression escapes that evaluate to
plain strings. Combining this further with configurable delimiters,
we get the functionality of here-strings too.

> (define qs string-append) ; qs is for quasi-string
> @qs{... name=@name ...}
"... name=earth ..."
> @qs|{...} @name=|@name {...}|
"...} @name=earth {..."

Since the Scheme reader is used to read escaped expressions,
we need some way to separate identifiers from adjacent text that
will otherwise be read as part of the identifier, or from braces that
should not be part of the @-form. One solution that a few Scheme
implementations of a textual syntax choose is to avoid the prob-
lem: require using an escaped begin expression when delimiting
identifiers. In Scribble, we have avoided such solutions for a few
reasons: (1) it is inconvenient, especially when it breaks the tex-
tual flow with an otherwise redundant identifier; (2) a (begin id)
expression is not always equivalent to id (e.g., in a quoted list);
and (3) given the uniform Scribble syntax, it makes more sense to
have a way to avoid a following brace from becoming part of an
@-expression, rather than leave it to the less convenient escapes.

The Scribble solution for this is to use |...| delimiters. The
vertical bar character was chosen partly because it is also used by
the alternative delimiter syntax (so the motivation is to keep a small
set of “special” characters), and partly because in PLT Scheme,
|id| is read as the id identifier.

> @show{Hello, @name.}
reference to undefined identifier: name.
> @show{Hello, @|name|.}
Hello, earth.
> @show{Hello, @|name|{}.}
Hello, earth{}.

Note, however, that the two uses are different: if the vertical bars
were left for the Scheme reader, the above examples would not
have worked (the second would still read the period as part of the
identifier, and the third would still use the braces as the form’s
textual body). This is not a problem in practice: @-forms are for
human-authored texts, so unconventional identifiers are not used;
even if there is a case where such an identifier is needed, it is
possible to use backslash escapes as usual in the PLT reader.

2.5 Further Extensions
2.5.1 Scheme-Mode Arguments
While we have a convenient way for specifying textual @-forms
and Scheme S-expressions in both code and text contexts, there are
cases where it is convenient to have a form with both S-expression
subforms and a textual body. Such a mixture of the two kinds of
subforms is particularly useful in a documentation system, where
many typesetting procedures consume text (as a ‘rest’ argument) as
well as keyword arguments for various customization options, but
also for functions that expect a few non-text argument before the
textual body. Yet, using the Scribble syntax that we have seen so
far make this inconvenient and error prone.

> (define (shout #:level n . text)
(list text (make-list n "!")))

> @show{@shout{@|#:level|@|3|Greetings}}
Greetings!!!

The way that this is addressed in Scribble is by introducing another
part to @-forms where additional “Scheme-mode” arguments can
appear. This part is specified using square bracket delimiters.

> @show{@shout[#:level 3]{Greetings}}
Greetings!!!

The textual body part of an @-form is still optional — making
it is possible to specify only the Scheme-mode arguments with
no textual body at all. Such @-expressions are read as a simple
parenthesized list with the head followed by the arguments, making
it an alternative form for plain S-expressions.

> @list{@list[1 2 3] @(list 1 2 3)}
((1 2 3) " " (1 2 3))

This apparent redundancy is a by-product of making the Scribble
syntax uniform. While both of the @-expression and the escaped
S-expression read as exactly the same code, we use a convention
where the first form is for expressions that produce text, and the sec-
ond for other expressions. This makes more sense in places where
the default reader mode for a whole file is the Scribble reader’s
“text mode”, which is used, for example, in the PLT documentation
sources. In these files, a function like itemize that expects items
as arguments is written using the first form, while require and
define expressions are written using the second.

#lang scribble/manual
@(require some-module)
...text...
@itemize[@item{...text...}

@item{...text...}]
...text...

It is interesting to note that initially, we intended to use Scheme-
mode part of @-forms only for keyword arguments, and used
@itemize{...}, which means that the itemize function needs
to ignore all-whitespace string arguments (and throw an error for
other string arguments). Only later we ‘discovered’ that the square-
bracket form makes more sense.

2.5.2 Headless Expressions
The full syntax of an @-form is therefore an @, a Scheme-syntax
form head, a sequence of Scheme-syntax arguments in square
brackets, and a sequence of text-mode arguments delimited by
square braces. Only one of these is required — if only the head
is included, we get an expression escape; and if the head is not
included, then the Scribble reader will read it as a parenthesized
expression with only the Scheme-mode and/or textual-mode argu-
ments. This is mostly useful inside a Scheme quote:

> ’@{Hello,
world!}

("Hello," "\n" "world!")
> ’@{Hello @{world}!}
("Hello " ("world") "!")
> ‘@{Hello @|,name|!}
("Hello " "earth" "!")

2.5.3 Dealing with Scheme Punctuations
There is a minor problem that is related to Scheme quasiquotes.
Say that we want to have a quasiquoted list, and use unquoted @-
forms in this list. The @ character in ,@foo is going to be read as the
short notation for unquote-splicing — a problem that appears
in a few places in the PLT documentation sources7. An ugly hack
around this problem is to add a space after the comma.

> ‘(html ,@string-titlecase{hello world!})
unquote-splicing: expected argument of type 〈proper list〉; given #〈procedure:string-

titlecase〉
> ‘(html , @string-titlecase{hello world!})
(html "Hello World!")

7 This is similar to one reason that identifiers are not allowed to begin with
a @ in standard Scheme, as it makes ,@foo ambiguous.

70 Scheme and Functional Programming, 2009

A related problem occurs when we try to unquote @-forms: if we
follow the rules, we need ‘@{...@, @f{}...} — but Schemers
want their unquotes short and convenient (e.g., reader shorthands).

Scribble solves both problems by “pulling out” any of the short-
hand punctuations (’ ‘ , ,@ #’ #‘ #, #,@) outside of an @-form’s
head when they are found there, and wraps them around the whole
expression. This solves both problems conveniently:

> ‘(html @,string-titlecase{hello world!})
(html "Hello World!")
> ‘@html{... @,string-titlecase{hello world!} ...}
(html "... " "Hello World!" " ...")

2.5.4 Extending Scheme Escapes
Since we have a specific syntax for specifying Scheme expression
escapes (@|...|), it is natural to generalize it: instead of a single
Scheme expression, it can hold more expressions, or none at all.
When more than one expressions are used, they are all spliced into
the containing @-form.

> @list{foo @|(+ 1 2) (* 3 4)| bar}
("foo " 3 12 " bar")

Note that this means that it possible to use this for keyword argu-
ments, e.g., @para{@|#:style ’small|blah blah} — but this
is inconvenient: it is heavy on punctuation (therefore hard to re-
member and easy to mistakes), and it is unnatural in the sense that
the Scheme-mode part is nested inside the textual part. The square-
bracket syntax is vastly easier to remember and simpler to use.

A Scheme escape with no expressions serves a special purpose
as a “separator token” that can be used to split some text into two
strings. This is rarely used since, as mentioned above, Scribble
code tend to not rely on a particular separation of the textual-body
arguments. A slightly more useful use of zero-expression escapes
is forcing the reader to include an initial or a final newline, more
spaces at the beginning or at the end of a line.

> @list{
foo @|| bar
}

("foo " " bar")
> @list{@||

@|| foo @||
@||}

("\n" " foo " "\n")

2.5.5 Comments
Finally, the Scribble reader has syntax for #||#-like balanced com-
ments and ;-like line comments. Note that we cannot use Scheme
comments in escape expressions; it seems that an escape expres-
sion can be used with a balanced Scheme comment (making it an
empty escape expression): @|#|...|#|. Ignoring the hieroglyphic
look of this construct, the problem is that the commented portion
is a comment in Scheme syntax. For example, if the commented
part contains |#, then the comment will terminate prematurely.
A proper way to achieve balanced comments without an exten-
sion to the Scribble syntax is therefore even more hieroglyphic:
@|#;@{...}|. Line comments are impossible, since we will still
need to insert something on the following line.

A balanced comment in Scribble is written as @;{...}. The
body is still parsed in text-mode, so it can hold balanced braces,
and it can use the alternative delimiter syntax.

> @list{foo@;{commented
text}bar}

("foobar")
> @list{foo@;{...{}...}bar}
("foobar")
> @list{foo@;|{...}...}|bar}
("foobar")

A line comment starts with a @; (and followed by a character other
than ;), and it ends at the first non-whitespace character in the
following line. This kind of comment can be useful in the same
way as LATEXcomments.

> @list{Some text, @; a comment
more text.}

("Some text, more text.")

There is no syntax for an “expression comment”, because defining
an “expression” in a textual context is more difficult, and also
because we had no need for this so far.

3. Text-Mode Source Code
While the Scribble extension is extremely useful, there are cases
where we want to change our “perspective”. Instead of thinking
about source code as a Scheme file that contains some textual data,
we wish to view it as a text file that contains some embedded
Scheme code.

There are a number of applications where this shift in view is
desirable. The most obvious case in PLT Scheme, and in fact one
of the major motivations for the Scribble syntax, is the Scribble
documentation system itself. Files are written in one of the Scribble
languages (e.g., #lang scribble/manual), where all text in the
source (except for the #lang line itself) is read as strings by default,
and rendered as text in the target manual. The exception to this is
@-forms (including @ escape expressions) which are read as usual in
the Scribble syntax. For example, the source of the Scribble manual
starts with:

#lang scribble/manual
@(require scribble/bnf "utils.ss")
@title{@bold{Scribble}: PLT Documentation Tool}
@author["Matthew Flatt" "Eli Barzilay"]
Scribble is a collection of tools for creating prose
...

Unfortunately, implementing a reader for such languages cannot
be done with a readtable as it is no longer an extension of the
Scheme reader. Doing so will require overriding all characters
(including Unicode characters). But there is no need for a separate
reader implementation: at the conceptual level, the syntax of these
files is as if the source is all contained in the textual body part
of an @-form that surrounds the whole contents. This description
provides a concrete hint for implementing such a reader — the
only thing that we need is to invoke the part of the Scribble reader
that parses a textual body. Indeed, the Scribble reader’s API makes
its textual body parser available as an “inside” kind of reader
function, and this function can be used as a module reader (via the
#lang mechanism) to parse the source. When invoked this way,
the toplevel textual parser is only different in that it is expecting an
end-of-file to end the text, rather than a } closing delimiter.

The result of this inside reader has a different type from the
normal Scheme reader (read and read-syntax in PLT Scheme)
— instead of returning a single syntax value, it returns a list of
such values. Most items in this list are strings and the rest are @-
forms. The list then becomes the body expressions in the module
that is constructed by the #lang-specified language. The textual
languages then use a special macro that can easily change the se-
mantics of the module’s toplevel expressions — #%module-begin;
this macro is essentially wrapped around the module’s body, and
therefore it can rewrite these toplevel expressions.

3.1 Specific Use Cases
The “inside reader” feature is a powerful tool for creating textual
languages. In the PLT codebase, it is used in a few places in
addition to the documentation language. Each of these languages

Scheme and Functional Programming, 2009 71

#lang scribble/text
@(require scheme/list scheme/string)
@(define map/nl (compose add-newlines map))
@(define (itemize #:bullet [b "*"] . items)

(map/nl (lambda (item) @list{@b @item})
items))

@(define (pseudo-loop statements)
@list{begin

@; mix braces and begin/end: the joy of pseudo
while (true@;{use NIL for dramatic effect}) {

@(map/nl (lambda (s)
(let* ([s (string-append* s)]

[s (string-downcase s)]
[s (regexp-replace*

#px"\\s+" s "_")])
@list{@s();}))

statements)
}

end})
@(define (both . items)

@itemize[@list{In text:
@(apply itemize #:bullet "-" items)}

@list{And repeating in a pseudo-code:
@pseudo-loop[items]}

])
@(define summary

@list{If that’s not enough,
I don’t know what is.})

Todo:
@both[@list{Hack some}

@list{Hack more}
@list{Sleep some}
@list{Hack some

more}]
@summary

Todo:
* In text:

- Hack some
- Hack more
- Sleep some
- Hack some

more
* And repeating in a pseudo-code:

begin
while (true) {

hack_some();
hack_more();
sleep_some();
hack_some_more();

}
end

If that’s not enough,
I don’t know what is.

Figure 1. Preprocessor example

has a specific twist on the concept of text files with embedded
Scheme code.

• In the documentation languages, the (mostly textual) expres-
sions are all collected into an implicit global definition that is
made available for later rendering,

(define doc (list . . . textual-contents. . .))
(provide doc)

except for definition expressions and require declarations that
are kept at the top-level.

As usual, the contents of the doc definition expression is
made of strings and @-forms, which evaluate to a hierarchy of
structs that the documentation system uses to represent the text,
and the Scribble renderers can translate the resulting value to
HTML, LATEX, or text. The documentation languages come with
bindings for typesetting markup, facilities to do LATEX-like pro-
cessing (grouping parts, splitting to paragraphs, and shorthands
like ‘‘ and --). Additional libraries provide manual-specific
bindings (e.g., forms for documenting procedures and for pro-

ducing examples with automatic sandbox evaluation to show
the results of these examples); bindings for articles, and more.

• Another case where the textual file reader is used is the a pre-
processor language, #lang scribble/text. In this language
toplevel expressions are displayed one at a time on the standard
output, using a procedure that is similar to the show definition
in the above examples. In fact, this article is written using this
language, where the source can be programmable in Scheme,
an obvious improvement over the underlying LATEX. (In addi-
tion, the reader uses \ as the character for @-forms, making it a
hybrid language, where both LATEXand Scheme can be used to
define new commands.)

The actual procedure that displays the text has the added ca-
pability of handling indentation and more8, making it possible
to tackle difficult tasks where whitespace matters. For exam-
ple, this language is used as a preprocessor for the PLT foreign
interface, where it needs to gracefully handle oddities such as
the requirement that C preprocessor (CPP) directives start at the
beginning of a line.

(Note that our preprocessor cannot replace the C prepro-
cessor. This will require implementing C-specific functionality
such us finding include files, and knowing which CPP symbols
are defined by the local C compiler. In other words, CPP is not
just a preprocessor tool — it also serves as a an extension lan-
guage of the C compiler, and indeed it is implemented as part
of the compiler.)

The Scribble preprocessor language can also be used from
Scheme files (extended with the @-form syntax) — we use
this approach in the source code of the plt-scheme.org web
pages.

• In addition to these, the PLT web server implements template-
based servlets using this facility: a servlet “includes” a template
file using include/reader, which injects the textual content
into a lexical scope in the servlet — for example, one that binds
identifiers that are used in the template. The resulting language
is similar in nature to existing template systems like the Cheetah
template engine for Python[12] — where template files do not
even have a #lang line.

The Scribble system is still quite young, and we expect to have
additional uses for textual languages in the future, in addition to
using it in extended-Scheme-syntax files. For example, most uses
of the slideshow[3] language still use strings in the source code;
switching to @-expressions can make writing slides considerably
easier, and a textual language might further improve it. Also, we
consider implementing some form of a wiki, where @-forms (and
Scheme) are used as for convenient markup.

To get a rough feeling of how working with Scribble in a textual
language looks like, see Figure 1 (real code tend to have much more
textual content, of course).

4. Syntax Design, DSLs, and Why Macros are So
Great

Scribble is essentially the last version in a decade of various exper-
iments with different approaches to combining textual content and
Scheme code. Two older systems are still part of the PLT distri-
bution: mzpp is a template based preprocessor, which allows inter-
leaving of text and Scheme code in a conventional way; mztext is
a preprocessor that is similar in nature to TEX— when @ is found in
the input stream, a function name is read and applied on the stream,
allowing it to parse arbitrary amount of text in arbitrary ways (of-

8 This requires a PLT-specific feature: syntax values contain the position of
the expression in the source.

72 Scheme and Functional Programming, 2009

ten a {...} piece of text), and return a modified stream that can
contain new tokens.

Our experience of the development and implementation of the
Scribble syntax demonstrates that extending a language at the con-
crete syntax level is hard. The end result seems sensible now, but
the road that leads up to it is paved with subtle decisions. A few
examples:

• How do we deal with quoting delimiters? As discussed above,
there are several options with different trade-offs.

• Should we stick to the Syntax of scheme identifiers even though
it sometimes require extra quoting? Maybe change it to break
on periods, colons, etc?

• What is the best way to solve the possible problem with ,@?
• Even the seemingly minor issue of how whitespaces are handled

can be important. For example, if a space is either allowed or
forbidden before the braced textual body (either parsing @foo
{x} as a single @-expression or as foo followed by " x"),
we may run into confusing mistakes; which choice is more
consistent and/or natural? (The Scribble chooses the latter.)
Perhaps such occurrences should just lead to a read error?

• Another question is how should the concrete syntax translate
to S-expressions. An earlier implementation used a dispatch
form, with subforms for the head, the Scheme sub-expressions,
and the textual body. The idea was that it would be convenient to
have a central point of control for assigning meaning to Scribble
forms, by importing or defining dispatch — but this did not
work out well. Having a central point was not useful (the only
dispatch definition that was used expanded to an application
form), and is better left for the underlying language (in this case,
to Scheme macros and/or PLT’s #%app form); meanwhile, the
dispatch symbol would show up in quoted forms, making a
common Scheme idiom (quoting and quasiquoting) less useful.

This particular issue has lead to the “principle of least sur-
prise”, and a decision that the Scribble reader should not inject
any new identifiers into the input that were not originally there.
In a sense, this is the same confusion Scheme newbies run into
with the quote character shorthand, e.g., (define ’x 4).

There is an important lesson about (Scheme) macros and lan-
guage design here. If the only tool you have to extend your lan-
guage is a concrete syntax extension, then the difficulty involved
in that considerably raises the bar for implementing such exten-
sions, and at the same time extension code is more fragile. At the
S-expression level, Scheme gets a clear win by separating the con-
crete level parser from syntactic extensions, which means that there
is only one place to worry about the concrete syntax. Similarly,
adding hygiene continues this trend of going higher than the con-
crete text of the code, as lexical scope is also separated into an
independent lower level.

Considering concrete syntax in this light, the utility of @-
expressions seems even greater. We get to keep the advantage of
a separate layer to do the concrete parsing, while making more
“text-oriented” information available at the higher level (i.e., in
user code). With this, the Scribble reader helps in providing an
additional bridge to the textual level of the source code. But this
should not come as a surprise, as strings have always been this
kind of flexible data containers. (Perhaps too flexible, as seen in
languages like Perl and TCL where strings are used for arbitrary
semi-structured data, similarly to S-expression abuse in Scheme
and Lisp.)

This additional utility of @-expressions can be demonstrated
by a simple use of here-strings, to specify code in a DSL. For
example, a Scheme interface to generate equation images specifies
shell commands in one string, and the LATEXequation in another
string.

(define commands
@string-append{

pdflatex x.tex
convert -density 96x96 x.pdf -trim +repage x.png})

(define (latex . body) ...)
...
@latex{\sum_{i=0}^{\infty}\lambda_i}

An obvious extension to this use is to add interpolation with escape
expressions. Taking it further, we can gradually choose textual
constructs to abstract over in the foreign syntax using Scheme
functions to generate thos syntax, while keeping the text-friendly
property of our source code. For example, the preprocessed C code
of our foreign interface has a cdefine function

@cdefine[ffi-lib 1 2]{
...C code...

}

that generates the boilerplate C function header, adds a CPP
#define before the function for error messages and an #undef
after it, and finally registers the function’s name and arity to be
used later in the C initialization code to create the proper binding.

5. PLT Specifics
Generally speaking, the Scribble reader does not require any fea-
tures specific to PLT Scheme. In fact, we hope that other imple-
mentors will consider doing so, which will provide their implemen-
tations with the same benefits, as well as benefit the whole Scheme
community.

There are, however, a number of specific PLT features that are
worth mentioning in this context.

• The syntax objects that are used in PLT Scheme contain source
location information. Making the Scribble reader use and record
locations is an important feature: parsing errors are properly
reported and easy to find, and even in the case of syntax errors
and runtime errors, we know where the error is (e.g., with
highlights in DrScheme) without resorting to dumping the S-
expression that were read for manual inspection. In other words,
it makes the Scribble syntax be a real part of the language,
rather than a loose add-on.

• The Scribble reader records information about the original form
in the parsed syntax values using syntax properties. For ex-
ample, we can distinguish syntax that was written as an S-
expression from one that was written as an @-expression, and
we can tell which of its subforms were specified as part of a tex-
tual body. This feature can be useful in some rare cases where
we want the choice of concrete form to affect the meaning of
the code.

• The implementation of keyword arguments in PLT Scheme[4]
allows keywords to come before other arguments, which is
convenient for use in textual forms, where the customization
options are better kept next to the function name. This is not
specific to the Scribble syntax — it fits well with any similar
markup language (e.g., XML attributes).

• In PLT, a #lang line at the top of a file is used to specify the
language for the file. This specification works by choosing a
reader that will wrap the code in a module form, which is how
both the syntax and the semantics of the language are deter-
mined. As mentioned above, there are several languages that
use the “inside reader” — for example, Scribble documenta-
tion files start with #lang scribble/manual and preproces-
sor files start with #lang scribble/text. In addition, there
is a ‘special’ at-exp language that is used as a prefix for other
languages, for example: #lang at-exp scheme. The at-exp
language will delegate to the scheme reader, but will mix-in

Scheme and Functional Programming, 2009 73

the Scribble @-expression reader as an extension. This makes
it easy to enrich your language with @-forms. In both case, the
main benefit of #lang is localizing the reader to a single file,
making it possible to use different concrete syntaxes for differ-
ent source files, without a damaging global effect.

• Some of the special syntax identifiers that are used in PLT
Scheme – like #%app and #%module-begin – can be used to
create customized languages like the preprocessor language,
where the result of evaluating a toplevel expression is printed
using the preprocessor printer, or the documentation language
where they are collected into a definition.

Again, missing these features does not prevent implementing
the Scribble reader and getting its benefits. These are features that
are generally useful, and enhance the utility of the reader in various
ways — not having them means that the respective benefit is lost,
but nothing else.

6. Alternative Approaches and Related Work
There are numerous approaches to representing textual content in
code — and more than a few have been used by Schemers.

• Many Schemers still use plain Scheme syntax. Some attempts
at making things a little better include quasiquoting, and the
simple idea of using no spaces around double quotes, which
can be seen as a very limited form of interpolation.

(string-append "Today is "(date)".")

There are also uses of multi-line Scheme strings, yet it seems
that these are disliked enough to be rather rare.

• SCSH[10] was the first implementation to popularize here
strings, with a syntax that was adopted by several implementa-
tions, including PLT Scheme

#<<END
...
END

• The Skribe[6] documentation system has greatly influenced the
design of Scribble, though not at the concrete syntax level.
Skribe has a simple string interpolation facility, where square
brackets delimit a string, and a ,(starts a Scheme expression
escape, requiring all such escapes to be parenthesized expres-
sions. Other implementations have a similar functionality, for
example, Gauche[8] and JScheme[1] have a built-in facility, and
other implementations (PLT included) have add-on libraries.
Implementations are mostly simple readtable-based extensions,
which usually expand to a string-append expression. How-
ever, there is no consensus for either the syntax or the details
(e.g., whether any value can be used in an expression escape or
just strings).

• BRL (“Beautiful Report Language”[9]) and later Kawa[2], use
the textual template approach: a source file is parsed as text by
default, with Scheme code in square brackets. An interesting
aspect of the BRL syntax is that in Scheme code, reversed
square brackets delimit strings, which makes it possible to view
brackets as marks around Scheme code which is possible not
continuous. For example:

Are we there yet?
[(if (< (time) eta)]no[]yes![)]

This approach is based on several server-side page generation
systems like PHP, JSP, and ASP.

• Finally, we have mentioned a few precursors to the current
Scribble syntax, two of which (mzpp and mztext) are still in-
clude in the PLT preprocessor collection. Several other experi-
ments were never made public, including an early template im-

plementation where escapes could be nested in a way that is
similar to Kawa, except that expression escapes can nest, form-
ing a tower of interpreters, and in addition each level can run a
different language. This was an example of a powerful system
that was not useful at all for practical purposes.

7. Conclusion
In PLT Scheme, the Scribble reader has proven itself as a valuable
tool. It is more powerful than similar facilities in modern languages,
and at the same time it is a relatively simple and uniform syntax,
which is critical to its acceptance. The reader plays a major role in
the success of our documentation system: in our content migration
from LATEXto Scheme, and in adding significant amounts of text —
we now have thousands of pages, and the quality of the documenta-
tion is much higher than it ever was before. It was also successful in
creating a better preprocessor tool, and a template-based generation
in our web server. The design process has been long and difficult;
getting the advantages of string syntaxes in modern languages, do-
ing so in a framework that fits well with the Scheme midset, and
improving on it, are all factors that make this a real challenge.

Any Scheme implementation can gain the same benefits, and in
fact, the Ikarus implementation[7] has been recently extended with
the Scribble syntax. We hope that additional implementations will
follow, leading to an even greater value of the syntax. Scribble is
easy to try out in PLT, and it is even possible to use PLT to “manu-
ally expand” code with Scribble syntax to plain S-expressions (by
simply using read on source files), so users of other implemen-
tations can try out the syntax using MzScheme as a preprocessor
before implementing it.

References
[1] Ken Anderson, Tim Hickey, and Peter Norvig. JScheme.

http://www.norvig.com/jscheme.html.
[2] Per Bothner. The Kawa language framework.

http://www.gnu.org/software/kawa/.
[3] Robert Bruce Findler and Matthew Flatt. Slideshow: Functional

presentations. In ACM SIGPLAN International Conference on
Functional Programming, pages 224–235, 2004.

[4] Matthew Flatt and Eli Barzilay. Keyword and optional arguments in
PLT Scheme. In Proceedings of the Tenth Workshop on Scheme and
Functional Programming, 2009.

[5] Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble:
Closing the book on ad hoc documentation tools. In ACM SIGPLAN
International Conference on Functional Programming, 2009.

[6] Erick Gallesio and Manuel Serrano. Skribe: a functional authoring
language. Journal of Functional Programming, 15(5):751–770, 2005.

[7] Abdulaziz Ghuloum. Ikarus Scheme.
http://ikarus-scheme.org/.

[8] Shiro Kawai. Gauche.
http://practical-scheme.net/gauche/.

[9] Bruce R. Lewis. BRL: the beautiful report language.
http://brl.sourceforge.net/.

[10] Olin Shivers. A Scheme shell. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1994.

[11] Michael Sperber (Ed.). The revised6 report on the algorithmic
language Scheme, 2007.

[12] Cheetah, the python powered template engine.
http://www.cheetahtemplate.org/.

74 Scheme and Functional Programming, 2009

Interprocedural Dependence Analysis of
Higher-Order Programs via Stack Reachability

Matthew Might Tarun Prabhu
University of Utah

{might,tarunp}cs.utah.edu

Abstract
We present a small-step abstract interpretation for the A-Normal
Form λ-calculus (ANF). This abstraction has been instrumented to
find data-dependence conflicts for expressions and procedures.

Our goal is parallelization: when two expressions have no de-
pendence conflicts, it is safe to evaluate them in parallel. The under-
lying principle for discovering dependences is Harrison’s principle:
whenever a resources is accessed or modified, procedures that have
frames live on the stack have a dependence upon that resource. The
abstract interpretation models the stack of a modified CESK ma-
chine by mimicking heap-allocation of continuations. Abstractions
of continuation marks are employed so that the abstract semantics
retain proper tail-call optimization without sacrificing dependence
information.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors–Optimization

General Terms Languages

Keywords A-Normal Form (ANF), abstract interpretation, control-
flow analysis dependence analysis, continuation marks

1. Introduction
Compiler- and tool-driven parallelization of sequential code is an
attractive option for exploiting the proliferation of multicore hard-
ware and parallel systems. Legacy code is largely sequential, and
parallelization of such code by hand is both cost-prohibitive and
error-prone. In addition, decades of computer science education
have created ranks of programmers trained to write sequential
code. Consequently, sequential programming has inertia—an in-
ertia which means that automatic parallelization may be the only
feasible option for improving the performance of many software
systems in the near term. Motivated by this need for automatic
parallelization, this work explores a static analysis for detecting
parallelizable expressions in sequential, side-effecting higher-order
programs.

When parallelizing a sequential program, two questions deter-
mine where parallelization is appropriate:

1. Where is parallelization safe?

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

2. Where is parallelization beneficial?

The safety question is clearly necessary because arbitrarily par-
allelizing parts of a program can change the intended behavior
and meaning of the program. The benefit question is necessary
because cache effects, communication penalties, thread overheads
and context-switches attach a cost to invoking parallelism on real
machines. Our focus is answering the safety question, and we an-
swer it with a static analysis tuned to pick up resource-conflict de-
pendences between procedures. We leave the question of benefit
to be answered by the programmer, heuristics, profiling or further
static analysis.

When determining the safety of parallelization, the core prin-
ciple is dependence: given two computations, if one computation
depends on the other, then they may not be executed in parallel. On
the other hand, if the two computations are independent, then exe-
cuting the computations in parallel will not change the meaning of
either one.

Example Consider the following code:

(let ((a (f x))
(b (g y)))

(h a b))

If possible, we would like to transform this code into:

(let|| ((a (f x))
(b (g y)))

(h a b))

where the form (let|| ...) behaves like an ordinary let, ex-
cept that it may execute its expressions in parallel. In order to do
so, however, the possibility of a dependence between the call to f
and the call to g must be ruled out. 2

Dependences may be categorized into control dependences and
data dependences. If the execution of one computation determines
whether or not another computation will happen, then there is
a control dependence between these computations. Fortunately,
functional programming languages make finding intraprocedural
control dependences easy: lexical scoping exposes control depen-
dences without the need for an intraprocedural data-flow analysis.

Example In the following code:

(if (f x)
(g y)
(h z))

there is a control dependence from the expression (g y) upon (f
x) and from (h z) upon (f x). 2

75

If, on the other hand, one computation modifies a resource
that another computation accesses or modifies, then there is a data
dependence between these computations.

Example In the following code:

(let* ((z 0)
(f (λ (r) (set! z r)))
(g (λ (s) z)))

(let ((a (f x))
(b (g y)))

(h a b)))

it is unsafe to transform the interior let into a let|| form, be-
cause the expression (f x) writes to the address of the variable z,
and the expression (g y) reads from that address. 2

1.1 Goal
Our goal in this work is a static analysis that conservatively bounds
the resources read and written by the evaluation of an expression
in a higher-order program.

The trivial case of such an analysis is an expression involving
only primitive operations, i.e., no procedures are invoked, and there
are no indirect accesses to memory. For example, it is clear that the
expression (+ x y) reads the addresses of the variables x and y,
but writes nothing.

A harder case is when an expression uses a value through an
alias. In this case, we can use a standard value-flow analysis such
as k-CFA [24, 25] to unravel this aliasing.

The hardest case, and therefore the focus of this work, is when
the evaluation of an expression invokes a procedure. For example,
the resources read and written during the evaluation of the expres-
sion (f x) depend on the values of the variables f and x. Syntacti-
cally separate occurrences of the same expression may yield differ-
ent reads and writes, and in fact, even temporally separated invoca-
tions of the same expression can yield different reads and writes.
To maximize precision, our analysis actually provides resource-
dependence information for each calling context of every pro-
cedure. Combined with control-flow information, this procedure-
dependence data makes it possible to determine the data depen-
dences for any given expression.

1.2 Approach
Harrison’s dependence principle [12] inspired our approach:

Principle 1.1 (Harrison’s Dependence Principle). Assuming the
absence of proper tail-call optimization, when a resource is read or
written, all of the procedures which have frames live on the stack
have a dependence on that resource.

Phrased in terms of procedures instead of resources, the intu-
ition behind Harrison’s principle is that a procedure depends on

1. all of the resources which it reads/writes directly, and

2. transitively, all of the resources which its callees read/write.

Harrison’s principle implies that if an analysis could examine
the stack in every machine state which accesses or modifies a re-
source, then the analysis could invert this information to determine
all of the resources which a procedure may read or write during the
course of execution. Obviously, a compiler can’t expect to examine
the real execution trace of a program: it may be non-terminating, or
it may depend upon user input. A compiler can, however, perform
an abstract interpretation of the program that models the program
stack. From this abstract interpretation, the compiler can conserva-
tively bound the resources read and written by each procedure.

Example In the following program,

(define r #f)

(define (f) (g))
(define (g) (h))
(define (h) (set! r 42))

(f)

at the assignment to the variable r, frames on behalf of the pro-
cedures f, g and h are on the stack, meaning each has a write-
dependence on the variable r. 2

A modification of Harrison’s principle generalizes to the pres-
ence of a semantics with proper tail-call optimization by record-
ing caller and context information inside continuation marks [4].
A continuation mark is an annotation attached to a frame (a con-
tinuation) on the stack. This work exploits continuation marks to
reconstruct the procedures and calling contexts live on the stack at
any one moment. The run-time stack is built out of a chain of con-
tinuations, and each time an existing continuation is adopted as a
return point, the adopter is placed in the mark of the continuation;
this allows multiple dependent procedures to share a single stack
frame. It is worth going through the effort of optimizing tail calls
in the concrete semantics, because abstract interpretations of tail-
call-optimized semantics have higher precision [19].

Our approach also extends Harrison’s principle by allowing
dependences to be tracked separately for every context in which a
procedure is invoked. For example, when λ42 is invoked from call
site 13, it may write to resources a and b, but when invoked from
call site 17, it may write to resources c and d. By discriminating
among contexts, parallelizations which appeared to be invalid may
be shown safe.

Clarification It is worth pointing out that our approach does not
work with shared-memory multi-threaded programs. The analysis
works only over sequential input programs, and then finds places
where parallelism may be safely introduced. By restricting our fo-
cus to sequential programs, we avoid the well-known state-space
explosion problem in static analysis of parallel programs. Finding
mechanisms for introducing additional parallelism to parallel pro-
grams is a difficult problem reserved for future work.

1.3 Abstract-resource dependence graphs
The output of our static analysis is an abstract-resource depen-
dence graph. In such a graph, there is a node for each abstract re-
source, and a node for each abstract procedure invocation. Each ab-
stract resource node represents a set of mutable concrete resources,
e.g., heap addresses, I/O channels. An abstract procedure invoca-
tion is a procedure plus an abstract calling context. In the simplest
case, all calling contexts are merged together and there is one node
for each procedure, as in 0CFA [24, 25]. We distinguish invocations
of procedures because each invocation may use different resources.

An edge from a procedure’s invocation node to an abstract
resource node indicates that during the extent of a procedure’s
execution within that context, a write to a resource represented by
that node may occur. An edge from an abstract resource node to a
procedure’s node indicates that, during the extent of a procedure’s
execution within that context, a read from a resource represented
by that node may occur. If there is a path from one invocation
to another, then there is a write/read dependence between these
invocations, and if two invocations can reach the same resource,
then there is a write/write dependence.

Example The write or the read may not be lexically apparent
from the body of the procedure itself, as it may happen inside

76 Scheme and Functional Programming, 2009

another procedure invoked indirectly. For example, consider the
code:

(define r #f)

(define (read-r) r)
(define (indirectly-read-r) (read-r))
(define (write-r) (set! r #t))

(write-r)
(indirectly-read-r)

This would produce a dependence graph of the form:

?> =<89 :;read-r
hh

PPPPPPPPPPPPPP
?> =<89 :;indirectly-read-r

OO
?> =<89 :;write-r

vvmmmmmmmmmmmmmmm

76 5401 23r

In this example, we did not have to concern ourselves with dis-
criminating on context: there is a single context for each procedure.
Since there is only one binding of the variable r, it has its own ab-
stract resource node. 2

1.4 Road map
A-normal form [ANF] (Section 2) is the language that we use for
our dependence analysis. Our analysis consists of an abstract in-
terpretation of a specially constructed CESK-like machine for ad-
ministrative normal form. To highlight the correspondence between
the concrete and the abstract, we’ll present the concrete and ab-
stract semantics simultaneously (Section 3). Following that, we’ll
discuss instantiating parameters to obtain context-insensitive (Sec-
tion 4) and context-sensitive (Section 5) dependence graphs. We’ll
conclude with a discussion of related work (Section 8) and future
efforts (Section 9).

1.5 Contributions
Our work makes the following contributions:

1. A direct abstract interpretation of ANF

2. enabled by abstractions of “heap-allocated” continuations.

3. A garbage-collecting abstract interpretation of ANF.

4. A dependence analysis for higher-order programs

5. enabled by abstractions of continuation marks.

6. A context-sensitive, interprocedural dependence analysis.

2. A-Normal Form (ANF)
The forthcoming semantics and analysis deal with the administra-
tive normal form λ-calculus (ANF) augmented with mutable vari-
ables (Figure 1). In ANF, all arguments in a procedure call must be
immediately evaluable; that is, arguments can be λ terms and vari-
ables, but not procedure applications, let expressions or variable
mutations. As a result, procedure calls must be either let-bound or
in tail-position. A single imperative form (set!) allows the muta-
tion of a variable’s value.

The ANF language in Figure 1 contains only serial constructs.
After the analysis is performed, it is not difficult to add a parallel
let|| form [13] to the language which performs the computation
of its arms in parallel.

Why not continuation-passing style? It is possible to translate
this analysis to continuation-passing style (CPS), but this analysis
is a rare case in which ANF simplifies presentation over CPS.

u ∈ Var = a set of identifiers
lam ∈ Lam ::= (λ (u1 · · ·un) ebody)
f , x ∈ Arg = Lam + Var

e ∈ Exp ::= x
| (f x1 · · · xn)
| (let ((u eval)) ebody)
| (set! u xval ebody)

Figure 1. A-normal form (ANF) augmented with mutable vari-
ables.

Because the analysis is stack-sensitive, the continuation-passing
style language would have to be partitioned as in ∆CFA [18]. This
partition introduces a notational overhead that distracts from pre-
sentation, instead of providing the simplification normally afforded
by CPS.

In addition to the syntactic partitioning, the semantics would
also need to be partitioned, so that true closures are kept separate
from continuation closures. Without such a semantic partitioning,
there would be no way to install the necessary continuation marks
solely on continuations.

The use of continuation-passing style would also require a con-
straint that continuation variables not escape—that call/cc-like
functions not be used in the direct-style source. This constraint
comes from the fact that Harrison’s principle expects stack-usage to
mimick dependence. It is not readily apparent whether Harrison’s
principle can be adapted to allow the stack-usage patterns of unre-
stricted continuations. ANF without call/cc obeys the standard
stack behavior expected by Harrison’s principle.

3. Concrete and abstract semantics
Our goal is to determine all of the possible stack configurations that
may arise at run-time when a procedure is read or written. Toward
that end, we will construct a static analysis which conservatively
bounds all of the machine states which could arise during the
execution of the program. By examining this approximation, we
can construct conservative models of stack behavior at resource-
use points.

This section presents a small-step, operational, concrete seman-
tics for ANF concurrently with an abstract interpretation [6, 7]
thereof. The concrete semantics is a CESK-like machine [9] ex-
cept that instead of having a sequence of continuations for a stack
(e.g., Kont∗ or Frame∗), each continuation is allocated in the
store, and each continuation contains a pointer to the continua-
tion beneath it. The standard CESK components are visible in the
“Eval” states. The semantics employ the approach of Clements and
Felleisen [4, 5] in adding marks to continuations; these allow our
dependence analysis to work in the presence of tail-call optimiza-
tion. (Later, these marks will contain the procedure invocations on
whose behalf the continuation is acting as a return point.)

3.1 High-level structure
At the heart of both the concrete and abstract semantics are their
respective state-spaces: the infinite set State and the finite set
Ŝtate. Within these state-spaces, we will define semantic transition
relations, (⇒) ⊆ State × State for the concrete semantics and
(;) ⊆ Ŝtate × Ŝtate for the abstract semantics, in case-by-case
fashion.

To find the meaning of a program e, we inject it into the con-
crete state-space with the expression-to-state injector function I :
Exp→ State , and then we trace out the set of visitable states:

V[[e]] = {ς | I[[e]]⇒∗ ς}.

Scheme and Functional Programming, 2009 77

Similarly, to compute the abstract interpretation, we also inject
the program e into the initial abstract state, Î : Exp→ Ŝtate. After
this, a crude (but simple) way to imagine executing the abstract
interpretation is to trace out the set of visitable states:

V̂[[e]] = {ς̂ | Î[[e]] ;
∗ ς̂}.

(Of course, in practice an implementor may opt to use a combina-
tion of widening and monotonic termination testing to more effi-
ciently compute or approximate this set [16].)

Relating the concrete and the abstract The concrete and abstract
semantics are formally tied together through an abstraction relation.
To construct this abstraction relation, we define a partial ordering
on abstract states: (Ŝtate,v). Then, we define an abstraction func-
tion on states: α : State → Ŝtate. The abstraction relation is then
the composition of these two: (v) ◦ α.

Finding dependence Even without knowing the specifics of the
semantics, we can still describe the high-level approach we will
take for computing dependence information. In effect, we will ex-
amine each abstract state ς̂ in the set V̂(e), and ask three questions:

1. From which abstract resources may ς̂ read?

2. To which abstract resources may ς̂ write?

3. Which procedures may have frames live on the stack in ς̂?

For each live procedure and for each resource read or written, the
analysis adds an edge to the dependence graph.

3.2 Correctness
We can express the correctness of the analysis in terms of its
high-level structure. To prove soundness, we need to show that
the abstract semantics simulate the concrete semantics under the
abstraction relation. The key inductive lemma of this soundness
proof is a theorem demonstrating that the abstraction relation is
preserved under a single transition:

Theorem 3.1 (Soundness). If:

ς ⇒ ς ′ and α(ς) v ς̂ ,
then there exists an abstract state ς ′ such that:

ς̂ ; ς̂ ′ and α(ς ′) v ς̂ ′.
Or, diagrammatically:1

ς
(⇒) //

v◦α
��

ς ′

v◦α
��

ς̂
(;)

// ς̂

Proof. Because the transition relations will be defined in a case-
wise fashion, a proof of this form is easiest when factored into the
same cases. There is nothing particularly interesting about the cases
of this proof, so they are omitted.

3.3 State-spaces
Figure 2 describes the state-space of the concrete semantics, and
Figure 3 describes the abstract state-space. In both semantics,
there are five kinds of states: head evaluation states, tail evaluation
states, closure-application states, continuation-application states,
and store-assignment states. Evaluation states evaluate top-level
syntactic arguments in the current expression into semantic val-
ues, and then transfer execution based on the type of the current

1 The dotted line means “there exists a transition.”

expression: calls move to closure-application states; simple expres-
sions return by invoking the current continuation; let expressions
move to another evaluation state for the arm; and set! terms move
directly to a store-assignment state.

Every state contains a time-stamp. These are meant to increase
monotonically during the course of execution, so as to act as a
source of freshness where needed. In the abstract semantics, time-
stamps encode a bounded amount of evaluation history, i.e., con-
text. (They are exactly Shivers’s contours in k-CFA [25].)

The semantics make use of a binding-factored environment [17,
19, 25] where a variable maps to a binding through a local envi-
ronment (β), and a binding then maps to a value through the store
(σ). That is, a binding acts like an address in the heap. A binding-
factored environment is in contrast to an unfactored environment,
which takes a variable directly to a value. We use binding-factored
environments because they simplify the semantics of mutation and
make abstract interpretation more direct.

A return point (rp) is an address in the store that holds a con-
tinuation. A continuation, in turn, contains an variable awaiting the
assignment of a value, an expression to evaluate next, a local en-
vironment in which to do so, a pointer to the continuation beneath
it, and a mark to hold annotations. The set of marks is unspecified
for the moment, but for the sake of finding dependences, the mark
should at least encode all of the procedures for whom this continu-
ation is acting as a return point.2

In order to allow polyvariance to be set externally [25] as in k-
CFA, the state-space does not implicitly fix a choice for the set of
times (contours) or the set of return points.

The most important property of an abstract state is that its
stack is exposed: the analysis can trace out all of the continuations
reachable from a state’s current return point. This stack-walking is
what ultimately drives the dependence analysis.

Abstraction map The explicit state-space definitions also allow
us to formally define the abstraction map α : State → Ŝtate
in terms of an overloaded family of interior abstraction functions,
| · | : X → X̂:

α(e, β, σ, rp, t) = (e, |β|, |σ|, |rp|, |t|)
α(χ,~v, σ, rp, t) = (|χ|, |~v|, |σ|, |rp|, |t|)

α(κ, v, σ, t) = (|κ|, |v|, |σ|, |t|)
α(~a,~v,Eval) = (|~a|, |~v|, α(Eval))

|β| = λv.|β(v)|
|σ| = λâ.

G

|a|=â
|σ(a)|

|〈v1, . . . , vn〉| = 〈|v1|, . . . , |vn|〉
|(lam, β)| = {(lam, |β|)}

|(u, e, β, rp,m)| = {(u, e, |β|, |rp|, |m|)}

|a| is fixed by the polyvariance
|m| is fixed by the context-sensitivity.

Injectors With respect to the explicit state-space definitions, we
can now define the concrete state injector:

I[[e]] = ([[e]], [], [], rp0, t0),

2 Tail-called procedures share return points with their calling procedure.

78 Scheme and Functional Programming, 2009

ς ∈ State = Eval + ApplyFun + ApplyKont + SetAddrs
Eval = EvalHead + EvalTail
EvalHead = Exp× BEnv × Store ×Kont × Time
EvalTail = Exp× BEnv × Store × RetPoint × Time
ApplyFun = Clo ×Val∗ × Store × RetPoint × Time
ApplyKont = Kont ×Val × Store × Time
SetAddrs = Addr∗ ×Val∗ × EvalTail

β ∈ BEnv = Var ⇀ Addr
σ ∈ Store = Addr ⇀ Val

a ∈ Addr = Bind + RetPoint
b ∈ Bind = Var × Time

v ∈ Val = Clo + Kont
χ ∈ Clo = Lam× BEnv
κ ∈ Kont = Var × Exp× BEnv × RetPoint ×Mark

rp ∈ RetPoint = a set of addresses for continuations
m ∈ Mark = a set of stack-frame annotations
t ∈ Time = an infinite set of times

Figure 2. State-space for the concrete semantics.

ς̂ ∈ Ŝtate = Êval + ̂ApplyFun + ̂ApplyKont + ̂SetAddrs

Êval = ̂EvalHead + ̂EvalTail
̂EvalHead = Exp× B̂Env × Ŝtore × K̂ont × T̂ime
̂EvalTail = Exp× B̂Env × Ŝtore × ̂RetPoint × T̂ime
̂ApplyFun = dClo ×dVal

∗ × Ŝtore × ̂RetPoint × T̂ime
̂ApplyKont = K̂ont ×dVal × Ŝtore × T̂ime

̂SetAddrs = Âddr
∗
×dVal

∗ × ̂EvalTail

β̂ ∈ B̂Env = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ dVal

â ∈ Âddr = B̂ind + ̂RetPoint

b̂ ∈ B̂ind = Var × T̂ime

v̂ ∈ dVal = P(dClo + K̂ont)

χ̂ ∈ dClo = Lam× B̂Env

κ̂ ∈ K̂ont = Var × Exp× B̂Env × ̂RetPoint × M̂ark

brp ∈ ̂RetPoint = a set of addresses for continuations
m̂ ∈ M̂ark = a set of stack-frame annotations
t̂ ∈ T̂ime = a finite set of times

Figure 3. State-space for the abstract semantics.

Scheme and Functional Programming, 2009 79

and the abstract state injector:

Î[[e]] = ([[e]], [], [], brp0, t̂0).

Partial order We can also define the partial ordering on the ab-
stract state-space explicitly:

(e, β̂, σ̂, brp, t̂) v (e, β̂, σ̂′, brp, t̂) iff σ̂ v σ̂′

(χ̂, ~̂v, σ̂, brp, t̂) v (χ̂, ~̂v′, σ̂′, brp, t̂) iff ~̂v v ~̂v and σ̂ v σ̂′

(κ̂, v̂, σ̂, t̂) v (κ̂, v̂′, σ̂′, t̂) iff v̂ v v̂′ and σ̂ v σ̂′

(~̂a, ~̂v, ς̂) v (~̂a, ~̂v, ς̂ ′) iff ς̂ v ς̂ ′

σ̂ v σ̂′ iff σ̂(â) v σ̂′(â)

for all â ∈ dom(σ̂)

〈v̂1, . . . , v̂n〉 v 〈v̂′1, . . . , v̂′n〉 iff v̂i v v̂′i for 1 ≤ i ≤ n
v̂ v v̂′ iff v̂ ⊆ v̂′.

3.4 Auxiliary functions
The semantics require one auxiliary function to ensure that the
forthcoming transition relation is well-defined. The semantics
make use of the concrete argument evaluator: E : Arg × BEnv ×
Store ⇀ Val :

E([[lam]], β, σ) = ([[lam]], β)

E([[u]], β, σ) = σ(β[[u]]),

and its counterpart, the abstract argument evaluator: Ê : Arg ×
B̂Env × Ŝtore ⇀ dV al:

Ê([[lam]], β̂, σ̂) = {([[lam]], β̂)}
Ê([[u]], β̂, σ̂) = σ̂(β̂[[u]]).

Given an argument, an environment and a store, these functions
yield a value.

3.5 Parameters
There are three external parameters for this analysis, expressed
in the form of three concrete/abstract function pairs. The only
constraint on each of these pairs is that the abstract component must
simulate the concrete component.

The continuation-marking functions annotate the top of the
stack with dependence information:

mark [: Clo × State → Kont → Kont

mark] : dClo× Ŝtate→ K̂ont→ K̂ont.

Without getting into details yet, a reasonable candidate for the set
of abstract marks is the power set of λ-terms: M̂ark = P(Lam).

The next-contour functions are parameters that dictate the poly-
variance of the heap, where the heap is the portion of the store that
holds bindings:

succ[: State → Time

succ] : Ŝtate→ T̂ ime.

For example, in 0CFA, set of times is a singleton: T̂ ime = {t̂0}.
The next-return-point-address functions will dictate the poly-

variance of the stack, where the stack is the portion of the store that
holds continuations. In fact, there are two pairs of these functions,

one to be used for ordinary let-form transitions:

alloca[: State → RetPoint

alloca] : Ŝtate→ ̂RetPoint,

and another pair to be used for non-tail application evaluation:

alloca[: Clo × State → RetPoint

alloca] : dClo× Ŝtate→ ̂RetPoint.

For example, in 0CFA, the set of return points is the set of expres-
sions: RetPoint = Exp, and first allocation function yields the
current expression, while the second allocation function yields the
λ-term inside the closure.

We will explore marks and marking functions in more detail
later. In brief, the polyvariance functions establishes the trade-off
between speed and precision for the analysis. For more detailed
discussion of choices for polyvariance, see [16, 25].

3.6 Return
In a return state, the machine has reached the body of a λ term, a
let form or a set! form, and it is evaluating an argument term to
return: x. The transition evaluates the syntactic expression x into
a semantic value v in the context of the current binding environ-
ment β and the store σ. Then the transition finds the continuation
awaiting the value of this expression: κ = σ(rp). In the subsequent
application state, the continuation κ receives the value v. In every
transition, the time-stamp is incremented from time t to succ[(ς).

ς∈EvalTailz }| {
([[x]], β, σ, rp, t)⇒

ς′∈ApplyKontz }| {
(κ, v, σ, t′) ,

where κ = σ(rp)

v = E([[x]], β, σ)

t′ = succ[(ς).

As will be the case for the rest of the transitions, the abstract
transition mirrors the concrete transition in structure, with subtle
differences. In this case, it is worth noting that the abstract transi-
tion nondeterministically branches to all possible abstract continu-
ations:

ς̂∈ ̂EvalTailz }| {
([[x]], β̂, σ̂, brp, t̂) ;

ς̂′∈ ̂ApplyKontz }| {
(κ̂, v̂, σ̂, t̂′) ,

where κ̂ ∈ σ̂(brp)

v̂ = Ê([[x]], β̂, σ̂)

t̂′ = succ](ς̂).

3.7 Application evaluation: Head call
From a “head-call” (i.e., non-tail) evaluation state, the transition
first evaluates the syntactic arguments f, x1, . . . , xn into semantic
values. Then, the supplied continuation is marked with information
about the procedure being invoked and then inserted into the store

80 Scheme and Functional Programming, 2009

at a newly allocated location: rp′.

ς∈EvalHeadz }| {
([[(f x1 · · ·xn)]], β, σ, κ, t)⇒

ς′∈ApplyFunz }| {
(χ, 〈v1, . . . , vn〉, σ′, rp′, t′) ,

where vi = E([[xi]], β, σ)

t′ = succ[(ς)

χ = E([[f]], β, σ)

rp′ = alloca[(χ, ς)

σ′ = σ[rp 7→ mark [(χ, ς)(κ)].

In the abstract transition, execution nondeterministically branches
to all abstract procedures:

ς̂∈ ̂EvalHeadz }| {
([[(f x1 · · ·xn)]], β̂, σ̂, κ̂, t̂) ;

ς̂′∈ ̂ApplyFunz }| {
(χ̂, 〈v̂1, . . . , v̂n〉, σ̂′, brp′, t̂′) ,

where v̂i = Ê([[xi]], β̂, σ̂)

t̂′ = succ](ς̂)

χ̂ ∈ Ê([[f]], β̂, σ̂)

brp′ = alloca](χ̂, ς̂)

σ̂′ = σ̂ t [brp 7→ mark](χ̂, ς̂)(κ̂)].

3.8 Application evaluation: Tail call
From a tail-call evaluation state, the transition evaluates the syn-
tactic arguments f, x1, . . . , xn into semantic values. At the same
time, the current continuation is marked with information from the
procedure being invoked:

ς∈EvalHeadz }| {
([[(f x1 · · ·xn)]], β, σ, rp, t)⇒

ς′∈ApplyFunz }| {
(χ, 〈v1, . . . , vn〉, σ′, rp, t′) ,

where vi = E([[xi]], β, σ)

t′ = succ[(ς)

χ = E([[f]], β, σ)

σ′ = σ[rp 7→ mark [(χ, ς)(σ(rp))].

In the abstract transition, execution nondeterministically branches
to all abstract procedures, and all of the current abstract continua-
tions are marked:

ς̂∈ ̂EvalHeadz }| {
([[(f x1 · · ·xn)]], β̂, σ̂, brp, t̂) ;

ς̂′∈ ̂ApplyFunz }| {
(χ̂, 〈v̂1, . . . , v̂n〉, σ̂′, brp, t̂′) ,

where v̂i = Ê([[xi]], β̂, σ̂)

t̂′ = succ](ς̂)

χ̂ ∈ Ê([[f]], β̂, σ̂)

σ̂′ = σ̂[brp 7→ mark](χ̂, ς̂)(σ̂(brp))].

3.9 Let-binding applications
If a let-form is evaluating an application term, then the machine
state creates a new continuation κ set to return to the body of the
let-expression, e′. (The mark in this continuation is set to some
default, empty annotation, m0.) Then, the transition moves on to a

head-call evaluation state.

ς∈EvalTailz }| {
([[(let ((u e)) e′)]], β, σ, rp, t)⇒

ς′∈EvalHeadz }| {
([[e]], β, σ, κ, t′) ,

where t′ = succ[(ς)

κ = (u, [[e]], β, rp,m0).

The abstract transition mirrors the concrete transition:

ς̂∈ ̂EvalTailz }| {
([[(let ((u e)) e′)]], β̂, σ̂, brp, t̂) ;

ς̂′∈ ̂EvalHeadz }| {
([[e]], β̂, σ̂, κ̂, t̂′) ,

where t̂′ = succ](ς̂)

κ̂ = (u, [[e]], β̂, brp, m̂0).

3.10 Let-binding non-applications
From a let-binding evaluation state where the expression is not
an application, the transition creates a new continuation κ set to
return to the body of the let expression, e′. After allocating a
return point address rp′ for the continuation, the transition inserts
the continuation into the new store, σ′.

ς∈EvalTailz }| {
([[(let ((u e)) e′)]], β, σ, rp, t)⇒

ς′∈EvalTailz }| {
([[e]], β, σ′, rp′, t′) ,

where t′ = succ[(ς)

κ = (u, [[e]], β, rp,m0)

rp′ = alloca[(ς)

σ′ = σ[rp′ 7→ κ].

The abstract transition mirrors the concrete transition, except
that the update to the store happens via joining (t) instead of
shadowing:

ς̂∈ ̂EvalTailz }| {
([[(let ((u e)) e′)]], β̂, σ̂, brp, t̂) ;

ς̂′∈ ̂EvalTailz }| {
([[e]], β̂, σ̂′, brp′, t̂′) ,

where t̂′ = succ](ς̂)

κ̂ = (u, [[e]], β̂, brp, m̂0)

brp′ = alloca](ς̂)

σ̂′ = σ̂ t [brp′ 7→ {κ̂}].

3.11 Binding mutation
From a set!-mutation evaluation state, the transition looks up the
new value v, finds the address a = β[[u]] of the variable and then
transitions to an address-assignment state.

ς∈EvalTailz }| {
([[(set! u x e)]], β, σ, rp, t)⇒

ς′∈SetAddrsz }| {
(〈a〉, 〈v〉, ([[e]], β, σ, rp, t′)) ,

where t′ = succ[(ς)

v = E([[x]], β, σ)

a = β[[u]].

Scheme and Functional Programming, 2009 81

Once again, the abstract transition directly mirrors the concrete
transition:

ς̂∈ ̂EvalTailz }| {
([[(set! u x e)]], β̂, σ̂, brp, t̂) ;

ς̂′∈ ̂SetAddrsz }| {
(〈â〉, 〈v̂〉, ([[e]], β̂, σ̂, brp, t̂′)) ,

where t̂′ = succ](ς̂)

v̂ = Ê([[x]], β̂, σ̂)

â = β̂[[u]].

3.12 Continuation application
The continuation-application transitions move directly to address-
assignment states:

ς∈AppKontz }| {
(κ, v, σ, t)⇒

ς∈SetAddrsz }| {
(〈a〉, 〈v〉, ([[e]], β, σ, rp, t′)) ,

where t′ = succ[(ς)

κ = (u, [[e]], β, rp,m)

a = (u, t′).

The abstract exactly mirrors the concrete:

ς̂∈ ̂AppKontz }| {
(κ̂, v̂, σ̂, t̂) ;

ς̂∈ ̂SetAddrsz }| {
(〈â〉, 〈v̂〉, ([[e]], β̂, σ̂, brp, t̂′)) ,

where t̂′ = succ](ς̂)

κ̂ = (u, [[e]], β̂, brp, m̂)

â = (u, t̂′).

3.13 Procedure application
Procedure-application states also move directly to assignment
states, but the transition creates an address for each of the formal
parameters involved:

ς∈ApplyFunz }| {
(χ,~v, σ, rp, t)⇒

ς′∈SetAddrsz }| {
(~a,~v, ([[e]], β′, σ, rp, t′)) ,

where χ = ([[(λ (u1 · · ·un) e)]], β)

t′ = succ[(ς)

ai = ([[ui]], t
′)

β′ = β[[[ui]] 7→ ai].

Once again, the abstract directly mirrors the concrete:

ς̂∈ ̂ApplyFunz }| {
(χ̂, ~̂v, σ̂, brp, t̂) ;

ς̂′∈ ̂SetAddrsz }| {
(~̂a, ~̂v, ([[e]], β̂′, σ̂, brp, t̂′)) ,

where χ̂ = ([[(λ (u1 · · ·un) e)]], β̂)

t̂′ = succ](ς̂)

âi = ([[ui]], t̂
′)

β̂′ = β̂[[[ui]] 7→ âi].

3.14 Store assignment
The store-assignment transition assigns each address ai its corre-
sponding value vi in the store:

ς∈SetAddrsz }| {
(~a,~v, ([[e]], β, σ, rp, t))⇒

ς′∈EvalTailz }| {
([[e]], β, σ′, rp, t′) ,

where σ′ = σ[ai 7→ vi]

t′ = succ[(ς).

In the abstract transition, the store is modified with a join (t)
instead of over-writing entries in the old store. Soundness requires
the join because the abstract address could be representing more
than one concrete address—multiple values may legitimately reside
there.

ς̂∈ ̂SetAddrsz }| {
(~̂a, ~v, ([[e]], β̂, σ̂, brp, t̂)) ;

ς̂′∈ ̂EvalTailz }| {
([[e]], β̂, σ̂′, brp, t̂′) ,

where σ̂′ = σ̂ t [âi 7→ v̂i]

t̂′ = succ](ς̂).

4. Computing data dependence from the stack
Against the backdrop of the abstract interpretation, we can define
how to extract dependence information from an individual state.
Harrison’s principle calls for marking each stack frame with the
procedure being invoked, and then, looking at the stack of each
state to determine the dependents of any resource being accessed
in that state.

The simplest possible marking function uses a set of λ terms for
the mark:

Mark = M̂ark = P(Lam).
In this case, we end up with an analysis function that tags continu-
ations with the λ term from the currently applied closure. The de-
fault mark is the empty set: m0 = m̂0 = ∅. The concrete marking
function is then:

mark [(([[lam]], β), ς)(κ) = (uκ, eκ, βκ, rpκ,mκ ∪ {[[lam]]}),

which means that the abstract marking function is:

mark](([[lam]], β̂), ς̂)(κ̂) = (uκ̂, eκ̂, β̂κ̂, brpκ̂, m̂κ̂ ∪ {[[lam]]}).

To compute the dependence graph, we need a function which
accumulates all of the marks for a given state, and then we’ll
need functions to compute the resources read or written by that
state. To accumulate the marks for a given state, we need to walk
the stack. Toward this end, we can build an adjacency relation on
continuations, (→ς̂) ⊆ K̂ont× K̂ont:

(u, [[e]], β̂, brp, m̂)→ς̂ κ̂ iff κ̂ ∈ σ̂ς̂(brp).

We can then use the function Ŝ : Ŝtate → P(Ĉont) to find the
set of continuations reachable in the stack of a state ς̂:

Ŝ(ς̂) = {κ̂ | κ̂ς̂ →∗ς̂ κ̂}.
Using this reachability function, the function M̂ : Ŝtate →
M̂ark computes the aggregate mark on the stack:

M̂(ς̂) =
[

κ̂∈Ŝ(ς̂)

m̂κ̂.

Using the aggregate mark function, we can construct the depen-
dence graph. For each abstract state ς̂ visited by the interpretation,
every item in the set M̂(ς̂) has a read dependence on every abstract

82 Scheme and Functional Programming, 2009

address read (via the evaluator Ê), and a write dependence for any
address which is the destination of a set! construct. The function
R̂ : Ŝtate → P(Âddr) computes the set of abstract addresses
read by each state:

R̂([[x]], β̂, σ̂, brp, t̂) = Â(β̂)〈x〉
R̂([[(f x1 · · ·xn)]], β̂, σ̂, brp, t̂) = Â(β̂)〈f, x1, . . . , xn〉
R̂([[(f x1 · · ·xn)]], β̂, σ̂, κ̂, t̂) = Â(β̂)〈f, x1, . . . , xn〉

R̂([[(let ((u e)) e′)]], β̂, σ̂, brp, t̂) = Â(β̂)〈e〉
R̂([[(set! u x e)]], β̂, σ̂, brp, t̂) = Â(β̂)〈x〉,

where the function Â : B̂Env → Exp∗ → P(Âddr) computes
the addresses immediately read by expressions:

Â(β̂)〈〉 = ∅

Â(β̂)〈e〉 =

(
{β̂(e)} e ∈ Var

∅ otherwise

Â(β̂)〈e1, . . . , en〉 = Â(β̂)〈e1〉 ∪ . . . ∪ Â(β̂)〈en〉,
and, for all inputs where the function R̂ is undefined, it yields the
empty set.

The function Ŵ : Ŝtate → P(Âddr) computes the set of
abstract addresses written by a state:

Ŵ([[(set! u x e)]], β̂, σ̂, brp, t̂) = {β̂(u)},
and for undefined inputs, the function Ŵ yields the empty set.

5. Context-sensitive dependence analysis
It may be the case that a procedure accesses different addresses
based on where and/or how it is called. The analysis can discrim-
inate among context-sensitive dependences by enriching the infor-
mation contained within marks to include context.

For example, the mark could also contain the site from which
the procedure was called:

M̂ark = P(Lam× Exp).

Then, if a procedure is called from different call sites, the depen-
dences at each call site will be tracked separately.

Example In the following code:

(define a #f)
(define b #f)

(define (write-a) (set! a #t 0))
(define (write-b) (set! b #t 1))

(define (unthunk f) (f))

(unthunk write-a) ; write-dependent on a
(unthunk write-b) ; write-dependent on b

there are two calls to the function unthunk. Without including con-
text information in the marks, both calls to unthunk will be seen
as having a write-dependence on both the addresses of a and b. By
including context information, it sees that unthunk writes to the
address of a in the first call, and to the address of b in the second
call, which means that both calls to the function unthunk could
actually be made in parallel. 2

As the prior example demonstrates, it is possible to have a
context-sensitive dependence analysis while still having a context-
insenstive abstract interpretation.

Alternatively, the context-sensitivity of the dependence analysis
could be synchronized with the context-sensitivity of the stack:

M̂ark = P(Lam× ̂RetPoint),

or of the heap:

M̂ark = P(Lam× T̂ ime).

6. Abstract garbage collection
The non-recursive, small-step nature of the semantics given here
ensures its compatibility with abstract garbage collection [19]. Ab-
stract garbage collection removes false dependences that arise from
the monotonic nature of abstract interpretation. Without abstract
garbage collection, two independent procedures which happen to
invoke a common library procedure may have their internal con-
tinuations, and hence their dependencies, merged. Moreover, the
arguments to that library procedure will appear to merge as well.
Abstract garbage collection collects continuations and arguments
between invocations of the same procedure, cutting off this chan-
nel for spurious cross-talk.

To implement abstract garbage collection for this analysis, we
define a garbage collection function on evaluation states:

Γ̂(ς̂) =

(
(e, β̂, σ̂|R̂eaches(ς̂), brp, t̂) ς̂ = (e, β̂, σ̂, brp, t̂)
(e, β̂, σ̂|R̂eaches(ς̂), κ̂, t̂) ς̂ = (e, β̂, σ̂, κ̂, t̂),

where the function R̂eaches : Ŝtate → P(Âddr) finds all of the
addresses reachable from a particular state:

R̂eaches(ς̂) = {â : â0 ↪→∗σ̂ς̂
â and â0 ∈ R̂oots(ς̂)},

and the relation (↪→) ⊆ Âddr× Ŝtore× Âddr determines which
addresses are adjacent in the supplied store:

â ↪→σ̂ â
′ iff â′ ∈ ̂Touches(σ̂(â)),

and the overloaded function ̂Touches determines which addresses
are touched by a particular abstract value:

̂Touches(v̂) = {â | ŷ ∈ v̂ and â ∈ ̂Touches(ŷ)}
̂Touches(lam, β̂) = range(β̂)

̂Touches(u, e, β̂, brp, m̂) = range(β̂) ∪ { brp}.

7. Implementation
The latest implementation of this analysis for a macroless subset
of Scheme is available as part of the Higher-Order Flow Analy-
sis (HOFA) toolkit. HOFA is generic Scheme-based static analy-
sis middle-end currently under construction. The latest version of
HOFA is available online:

http://ucombinator.googlecode.com/

Figure 4 contains an example of a dependence diagram for the
Solovay-Strassen cryptographic benchmark.

8. Related work
The semantics for dependence analysis are related to the semantics
for ΓCFA for continuation-passing style (CPS) [16]. In fact, care
was taken during this transfer to ensure that both abstract garbage
collection and abstract counting are just as valid for these seman-
tics. The notion of store-allocated continuations is reminiscent of
SML/NJ’s stack-handling [2], though because we do not impose an
ordering on addresses, we could be modeling either stack-allocated
continuations or store-allocated continuations. As these semantics
demonstrate, changing from CPS to direct-style adds complexity

Scheme and Functional Programming, 2009 83

VarLoc("$=$790")

lam1009lam1089 lam1076

VarLoc("random") VarLoc("$=$774")VarLoc("n")

lam999 lam1057 lam945

VarLoc("$=$991") VarLoc("$=$708") VarLoc("$=$734") VarLoc("$=$712") VarLoc("$1") VarLoc("$=$951") VarLoc("$=$746") VarLoc("$=$760") VarLoc("$=$956") VarLoc("a")VarLoc("$=$729")VarLoc("jacobi") VarLoc("$=$947") VarLoc("$=$717") VarLoc("$=$1078") VarLoc("generate-solovay-strassen-prime") VarLoc("generate-fermat-prime")VarLoc("$=$665") VarLoc("$=$890")VarLoc("is-solovay-strassen-prime?") VarLoc("$=$1034") VarLoc("$=$851")VarLoc("$=$857") VarLoc("$=$1069")VarLoc("$=$669") VarLoc("iterations")VarLoc("$=$1083") VarLoc("$=$646")VarLoc("$=$847") VarLoc("$=$861") VarLoc("$=$1064")VarLoc("$=$673") VarLoc("is-trivial-composite?") VarLoc("byte-size")VarLoc("modulo-power")VarLoc("$=$873") VarLoc("$=$1025")VarLoc("$=$681") VarLoc("is-fermat-prime?")VarLoc("$=$899") VarLoc("$=$653")VarLoc("$=$869") VarLoc("$=$877") VarLoc("square") VarLoc("base")

Figure 4. Solovay-Strassen benchmark dependence graph

in the form of additional transition rules. This dependence analy-
sis exploits the fact that direct-style programs lead to computations
that use the stack in a constrained fashion: stacks are never captured
and restored via escaping continuations. It is not clear whether Har-
rison’s principle extends to programs which use full, first-class con-
tinuations to restore popped stacked frames.

Abstract interpretation [6, 7] has long played a role in program
analysis and automatic parallelization. Bueno et al. [3] used ab-
stract interpretation of logic programs for automatic paralleliza-
tion. Ricci [21] investigated the use of abstract interpretation for
automatic parallelization of iterative constructs. Harrison [12] em-
ployed abstract interpretation is his approach to automatic paral-
lelization of low-level Scheme code.

The notion of continuation marks, a mechanism for annotating
continuations, is due to Clements and Felleisen [4, 5]. Clements
used them previously to show that stack-based security contracts
could be enforced at run-time even with proper tail-call optimiza-
tion [5]. Using continuation marks within an abstract interpreta-
tion is novel. Our work exploits continuation marks for the same
purpose: to retain information otherwise lost by tail-call optimiza-
tion. In this case, the information we retain are the callers and
calling contexts of all procedures that would be on a non-tail-call-
optimized stack.

The idea of computing abstractions of stack behavior in order to
perform dependence analysis appears in Harrison [12]. Harrison’s
work involved using abstract procedure strings to compute possi-
ble stack configurations. However, abstract procedure strings can-
not handle tail calls properly, and they proved a brittle construct in
practice, making the analysis both imprecise and expensive. Might
and Shivers improved upon these drawbacks in their generalization
to frame strings in ∆CFA [18, 20], but in handling tail calls prop-
erly, they removed the ability to soundly detect dependencies. The
analysis presented here simplifies matters because it avoids con-
structing a stack model out of strings, opting to use the actual stack
threaded through the store itself.

At present, this framework does not fully exploit Feeley’s
future construct [8], yet it could if combined with Flanagan and
Felleisen’s work [10] on removing superfluous touches. The mo-
tivating let|| construct may be expressed in terms of futures; that
is, the following:

(let|| ((v e) ...)
body)

could be rewritten as:

(let ((v (future e)) ...)
(begin (touch v) ...
body))

but, the present analysis does not determine if it is safe to remove
the calls to touch, since it does not know if there will be resource
usage conflicts with the continuation. Generalizing this analysis to
CPS should also make it possible to automatically insert future
constructs without the need for calls to touch, since it would be
possible to tell if the evaluation of an expression has a dependence
conflict with the current continuation.

Other approaches to automatic parallelization of functional pro-
grams include Schreiner’s work [23] on detecting and exploiting
patterns of parallelism in list processing functions. Hogen et al [1]
presented a parallelizing compiler which used strictness analysis
and generated an intermediate functional program with a special

syntactic “letpar” construct which indicated that a legal parallel
execution of subexpressions was possible. Parallelizing compil-
ers have been implemented for functional programming languages
such as EVE [15] and SML [22]. More theoretical work in this
space includes [11] and more recently [14].

9. Future work
It tends to be harder to transfer an analysis from CPS to ANF:
CPS is a fundamentally simpler language, requiring no handling
of return-flow in abstract interpretation, and hence, no stack. This
analysis marks a rare exception to that rule, in part because it is
directly focused on working with the stack. Continuation-passing
style can invalidate Harrison’s principle when continuations es-
cape. The two most promising routes for taming these unrestricted
continuations are modifications of ∆CFA [20, 16] and an abstrac-
tion of higher-order languages to push-down automata.

References
[1] ANDREA, G. H., KINDLER, A., AND LOOGEN, R. Automatic

parallelization of lazy functional programs. In Proc. of 4th European
Symposium on Programming, ESOP'92, LNCS 582:254-268
(1992), pp. 254–268.

[2] APPEL, A. W. Compiling with Continuations. Cambridge University
Press, 1992.

[3] BUENO, F., DE LA BANDA, M. G., AND HERMENEGILDO, M.
Effectiveness of abstract interpretation in automatic parallelization:
a case study in logic programming. ACM Transactions on Program-
ming Languages and Systems 21, 2 (1999), 189–239.

[4] CLEMENTS, J. Portable and high-level access to the stack with
Continuation Marks. PhD thesis, Northeastern University, 2005.

[5] CLEMENTS, J., AND FELLEISEN, M. A tail-recursive machine with
stack inspection. Transactions on Programming Languages and
Systems (2004).

[6] COUSOT, P., AND COUSOT, R. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Los Angeles, California, 1977), ACM
Press, New York, NY, pp. 238–252.

[7] COUSOT, P., AND COUSOT, R. Systematic design of program
analysis frameworks. In Conference Record of the Sixth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (San Antonio, Texas, 1979), ACM Press, New York, NY,
pp. 269–282.

[8] FEELEY, M. An Efficient and General Implementation of Futures on
Large Scale Shared-Memory Multiprocessors. PhD thesis, Brandeis
University, April 1993.

[9] FELLEISEN, M., AND FRIEDMAN, D. A calculus for assignments
in higher-order languages. In Proceedings of the ACM SIGPLAN
Symposium on Principles of Programming Languages (1987),
pp. 314–325.

[10] FLANAGAN, C., AND FELLEISEN, M. The semantics of future and its
use in program optimization. In POPL ’95: Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (New York, NY, USA, 1995), ACM, pp. 209–220.

[11] GESER, A., AND GORLATCH, S. Parallelizing functional programs
by generalization. In Journal of Functional Programming (1997),
vol. 9, pp. 46–60.

84 Scheme and Functional Programming, 2009

[12] HARRISON, W. L. The interprocedural analysis and automatic
parallelization of Scheme programs. Lisp and Symbolic Computation
2, 3/4 (Oct. 1989), 179–396.

[13] HOGEN, G., KINDLER, A., AND LOOGEN, R. Automatic
Parallelization of Lazy Functional Programs. In ESOP ’92, 4th
European Symposium on Programming (Rennes, France, February
26–28, 1992), B. Krieg-Brückner, Ed., vol. 582, Springer, Berlin,
pp. 254–268.

[14] HURLIN, C. Automatic parallelization and optimization of programs
by proof rewriting. In SAS ’09: Proceedings of the 16th international
symposium on Static Analysis (to appear).

[15] LOIDL, H. W. A parallelizing compiler for the functional program-
ming language eve, 1992.

[16] MIGHT, M. Environment Analysis of Higher-Order Languages. PhD
thesis, Georgia Institute of Technology, 2007.

[17] MIGHT, M. Logic-flow analysis of higher-order programs. In
Proceedings of the 34th Annual ACM Symposium on the Principles of
Programming Languages (POPL 2007) (Nice, France, January 2007),
pp. 185–198.

[18] MIGHT, M., AND SHIVERS, O. Environment analysis via ∆CFA. In
Proceedings of the 33rd Annual ACM Symposium on the Principles of
Programming Languages (POPL 2006) (Charleston, South Carolina,
January 2006), pp. 127–140.

[19] MIGHT, M., AND SHIVERS, O. Improving flow analyses via ΓCFA:
Abstract garbage collection and counting. In Proceedings of the 11th
ACM International Conference on Functional Programming (ICFP
2006) (Portland, Oregon, September 2006), pp. 13–25.

[20] MIGHT, M., AND SHIVERS, O. Analyzing the environment structure
of higher-order languages using frame strings. Theoretical Computer
Science 375, 1–3 (May 2007), 137–168.

[21] RICCI, L. Automatic loop parallelization: An abstract interpretation
approach. In International Conference on Parallel Computing in
Electrical Engineering (Los Alamitos, CA, USA, 2002), vol. 00,
IEEE Computer Society, p. 112.

[22] SCAIFE, N., HORIGUCHI, S., MICHAELSON, G., AND BRISTOW,
P. A parallel sml compiler based on algorithmic skeletons. J. Funct.
Program. 15, 4 (2005), 615–650.

[23] SCHREINER, W. On the automatic parallelization of list-based
functional programs. In Proceedings of the Third International
Workshop on Compilers for Parallel Computers (1992). Invited
paper.

[24] SHIVERS, O. Control-flow analysis in Scheme. In Proceedings of the
SIGPLAN ’88 Conference on Programming Language Design and
Implementation (PLDI) (Atlanta, Georgia, June 1988), pp. 164–174.

[25] SHIVERS, O. Control-Flow Analysis of Higher-Order Languages.
PhD thesis, School of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-
CS-91-145.

A. Appendix: Conventions
We make use of the natural meanings for the lattice operation t,
the order relation v and the elements ⊥ and >, i.e., point-wise,
component-wise, member-wise liftings.

The notation f [x1 7→ y1, . . . , xn 7→ yn] means “the function
f , except at point xi, yield the value yi.”

Given a function f : X → Y , we implicitly lift it over a set
S ⊆ X:

f(S) = {f(x) | x ∈ S}.
The function f |X denotes the function identical f , but defined

only over inputs in the set X .

Scheme and Functional Programming, 2009 85

Descot: Distributed Code Repository Framework

Aaron W. Hsu
Indiana University

awhsu@indiana.edu

Abstract
Programming language communities often have repositories
of code to which the community submits libraries and from
which libraries are downloaded and installed. In commu-
nities where many implementations of the language exist,
or where the community uses a number of language vari-
eties, many such repositories can exist, each with their own
toolset to access them. These diverse communities often have
trouble collaborating accross implementation boundaries,
because existing tools have not addressed inter-repository
communication. Descot enables this collaboration, making
it possible to collaborate without forcing large social change
within the community. Descot is a metalanguage for de-
scribing libraries and a set of protocols for repositories to
communicate and share information. This paper discusses
the benefits of a public interface for library repositories
and details the library metalanguage, the server protocol,
and a server API for convenient implementation of Descot-
compatible servers.

1. Introduction
All programming language communities must share code to
be effective. Issues of portability and ease of distribution
arise often within most language communities. In order to
share code effectively, programmers must be able to run code
portably over different implementations of a language, and
they must have some means of distributing their code to
users who need an easy way to install and manage their col-
lection of libraries. In communities with a single dominant
implementation, the first requirement is usually moot, and
a central repository of portable libraries usually satisfies the
second requirement (e.g. — CPAN [15]). However, in diverse
communities, where many language standards and imple-
mentations may actively coexist in close proximity to one
another, portability and easy distribution and installation
can elude the community as a whole.

For example, the Scheme community actively uses at least
four standards [19, 8, 21, 29] and even more actively devel-
oped and maintained Scheme implementations. Other com-
munities share these same features. The Scheme commu-
nity has made progress through efforts like the R6RS [29]
library form at improving the overall portability of Scheme

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

code. The Scheme community also has a number of reposito-
ries and tools for managing libraries. Many of these are im-
plementation specific, but some, like Snow [12] are portable
across implementations and try to store portable code pack-
ages.

In communities like Scheme, standardizing a single set of
tools and a repository for managing, locating, and installing
libraries of code is a difficult proposition at best. Rather than
trying to create a standard toolchain and a central repos-
itory within a community that promotes diverse solutions
and approaches, it would be better if many tools could be
developed and many repositories created in such a way that
they could all interoperate and communicate with one an-
other. This would allow the tools to grow as needed around
the segments of the community to which they were best
suited, and would prevent any other segment of the commu-
nity from losing out on advances made by the rest of the
community. If a public interface existed for library repos-
itories and tools to communicate among themselves in an
effective, extensible manner, the benefits of a central repos-
itory could be retained, as well as the ability to develop
different approaches to the issue.

Descot [18] realizes just such an interface by utilizing an
RDF-based Schema [5, 24] to define a language for express-
ing library metadata and defining a set of protocols for in-
terfacing with servers. It defines protocols for querying the
server about code, retrieving specific library metadata, sub-
mitting code to the repository, and for mirroring one repos-
itory from another. Note that Descot does not try to re-
place existing management tools, which already take care
of installing code, and it does not attempt to establish any
specific repository. Instead, Descot enables the communica-
tion between repositories and among repositories and tools.
Descot does not attempt to deal with the portability of the
code itself, and leaves such efforts to other standards such
as R6RS [29]; it deals only with the metadata of a library
and the means to access this metadata.

With diverse communities like Scheme, collaboration be-
tween libraries will often break down into as much of a social
as a technical problem. Descot cannot hope to solve social
opposition, but it does enable the community to collaborate
while maintaining the normal benefits of decentralized, sep-
arate development. Descot was specifically designed to min-
imize the impact on the social structure of the community
that adopts it. This paper details the first steps towards en-
abling collaboration, by providing the techincal foundation.
The author intends to undertake further efforts, such as the
development of easy tools and libraries for deploying and in-
tegrating Descot, which will further reduce the barriers that
usually exist when trying to improve the collaboration of
largely separate efforts.

86

Among the largest of obstacles, implementors and design-
ers of repositories often have their own ideas about the de-
sign and use of the repository. Descot enables an unbounded
number of clients, each with their own unique features, to
operate on a wide variety of repositories. The basic design
of Descot also enables easy extension to the metalanguage,
which means that additional features for specific reposito-
ries may be added easily, without making it impossible for
existing tools to work with the basic metadata. With Descot
almost every feature and detail is left to the designer of the
system, except for the parts necessary for useful communi-
cation, and even these are made flexible enough to allow a
tremendous range of freedom.

While Descot is not tied to one specific language commu-
nity, the remainder of this paper discusses Descot within the
context of the Scheme community. Section 2 discusses the
existing tools surrounding library distribution that are nec-
essary for Descot to be useful. Section 3 details the Descot
system itself. Section 4 lists some of the work others have
done which relates to Descot. Section 5 contains concluding
remarks.

2. Background
In order to effectively share code in a community such as
Scheme, there must be a way of running another author’s
code, and there must be a way of searching, installing, and
submitting code to the public. Scheme implementations of-
ten have a central repository for that implementation to
which authors usually submit their code [31, 26, 30]. In or-
der to manage large programs effectively, most Scheme im-
plementations provide a module system that helps to control
the visibility of procedures and macros defined in a block of
code. Additionally, these repositories have convenient tools
that allow libraries to be automatically downloaded and in-
stalled if desired. Often, merely specifying a requirement for
one or more libraries is enough to guarantee that an user of
a program can automatically install the libraries, assuming
that they are visible in the central repository.

Other repositories attempt to host portable libraries that
work across implementations. Snow [12] is a good example of
this family of repositories (see Section 4 for more examples of
these systems), and has a number of useful tools, including
command line management tools and a packaging system.
Because Snow tries to be portable across implementations,
the tools themselves are able to run on a variety of Scheme
implementations, and the libraries available in the Snow
repository often run on more than one implementation.

Traditionally, authors of Scheme libraries would simply
host their files in tarballs or flat files, and would maintain a
set of dependencies that their code used. (See, for example,
see Oleg Kiselyov’s collection of Scheme code [23].) User’s
wanting to use their code would then either use the semi-
portable libraries provided, with a little work, or would
attempt to find them in their implementation’s repository.
This effort has been made somewhat easier by the recent
standardization of the R6RS library form [29], which defines
a standard library syntax, enabling code to be more easily
shared among implementations and users.

Still, there are a wide variety of tools for library man-
agement, and many different module systems in active use.
Clearly, the cooperation of these various tools, reposito-
ries, and implementations would benefit the community as
a whole.

Library Binding SCM CVS Retrieval-method
Archive Single-file License Person Implementation

Table 1. Descot Classes

3. Descot
The Descot system itself divides roughly into the schema
[17], which is the actual language for libraries, the server
protocol, which specifies how servers ought to behave, a
query protocol, for handling server queries, and an API that
assists in the development of Descot servers. Descot itself
consists of the first three elements, and the API exists as a
convenience for developers.

3.1 Schema

Descot defines an RDF Schema [17, 24] for describing li-
braries of code. It augments the existing default RDF
Schema [5] and is itself written using RDF. RDF is a spec-
ification for describing metainformation as directed graphs
and has a number of syntactic representations. Current De-
scot tools support arbitrary representation formats, but by
default, use SRDF (see the Appendix). The author chose
RDF as the basic metalanaguage because it already has ex-
isting tools written around it and is relatively mature. RDF
was designed specifically with this sort of problem in mind,
and allows extensions as a matter of course. This makes it
ideal as the basic language from the perspective of market
share and technical features. The XML representation of
RDF, however, is tedious and unpleasant to write by hand.
SRDF is an S-expression based RDF format designed to
mirror Turtle [3]. SRDF makes it easy to write RDF graphs
by hand, while remaining easy to manipulate and parse us-
ing basic Scheme functions. The author actually began by
writing his own S-expression based metalanguage, but soon
realized that it was essentially a reimplementation of RDF.
By using RDF, many features and semantics may be left to
the RDF designers, greatly simplifying the specification of
Descot’s metalanguage. Descot also supports Turtle out of
the box provided that the necessary libraries exist. Since the
Schema itself is based on RDF, it is also format neutral; any
other RDF format could be used, including, for example,
SXML [23]. The Schema itself is a set of URIs to which we
ascribe semantic meaning, and is used in the description of
RDF Triples. All the URIs start with the prefix:

http://descot.sacrideo.us/10-rdf-schema#
All terms mentioned in this section are the tails of URIs
prefixed by the above string.

The terms are divided roughly into Classes (see Table
1) and Properties. Most of the properties apply directly to
Libraries (Table 3), but there are some general, person, and
CVS properties as well (Table 2).

Every class is a type for a specialized node in a Descot
Graph. Every node in a descot graph is expected to have a
type property associated with it to identify its class.

Library nodes represent libraries, and most of the prop-
erties stem from Library nodes. Library nodes are also the
main root node for most retrievals.

Binding nodes represent information about a procedure
or macro that is exported or imported from a library. These
nodes can be used to store information such as alternate
names for procedures. They may also point to documenta-
tion about a specific procedure, but the only required prop-
erty is the name.

Scheme and Functional Programming, 2009 87

name alts desc homepage e-mail
cvs-root cvs-module

Table 2. General/Miscellaneous Descot Properties

Archive nodes contain file archive download information.
Generally, they may point directly to the location of an
Archive, such as a tarball. As such, these will usually be
end nodes in a Descot graph, because they will not contain
further information.

Single-file nodes are similar to Archive nodes, but
they point to single Scheme files instead of archives. Gener-
ally, single files do not need to be processed by Descot clients
further before being fed into a compatible implementation.

License nodes contain information about a License type,
such as ISC, BSD, GPL, or a proprietary license of some
sort. They may point somewhere else as the main reference,
and have only a short description of the actual license in
the graph, or they may contain the entire text of the li-
cense as the description. A short name should be provided
that servers can use when they want to display licensing in-
formation without presenting the entire description, usually
given on one line.

Person and Implementation nodes follow a similar pat-
tern, describing people and implementations, respectively.
People have names and e-mail addresses associated with
them, and may have additional information. Implementa-
tions generally have a web site and a name associated with
them.

SCM is a general class for “Source Control” based libraries.
That is, SCM is a sub-class of Retrieval-method like Archive
and Single-file are, but it describes a retrieval via some
source control module, like CVS. CVS is the sub-class of the
SCM class that describes CVS server modules particularly.
Generally, one would use the CVS module or some other
equivalent (such as for SVN or Darcs) rather than using
SCM, but SCM properties may be defined to give generic
information about a source module to a server that may
not recognize the particular type of source control used.

Every node may be associated with a particular name
which can be anything, and is not specific to the type.
Library names are generally strings, but they could be
extended to include other information or other types if a
server desired. Generally, however, it is recommended to
stick with the same types for existing classes, and change the
range of the name property only for new classes introduced
specifically for some specific server or purpose, so that other
Descot-compatible systems do not have to work much harder
on classes that are already defined.

For any given node, it may also happen that there are
alternate nodes that would work in place of the given node.
alts is expected to point to an rdf Alt node that will list
the alternates. For example, a library may be implemented
by a number of authors, and each library could be listed as
an alternate to the others.

desc is a property pointing to a string node that contains
a description of the node. This could be the license text in
the case of a License node, or may be a human-readable
description of a library for Library nodes.

homepage can be used where applicable to associate a
given homepage to a node. The homepage referenced should
be a Resource, and not, for example, a blank node.

The CVS node class also has two properties associated
with it: cvs-root and cvs-module. These point to strings

deps names license
creation modified contact
authors categories copyright-year
exports location implementation
copyright-owner version

Table 3. Descot Library Properties

which contain the root of the CVS server and the module
name for the library, respectively. This is enough informa-
tion, generally, to obtain the library via CVS, but servers
may wish to list additional information, such as the sup-
ported protocols for the CVS server.

email associates a string representation of an e-mail
address with a given Person class node. The author did not
use e-mail as a unique ID for people because e-mail addresses
do not map directly in a one-to-one fashion to people.
However, implementations may want to resolve conflicts of
people who have the same name by differentiating them by
their e-mail addresses.

The following properties all expect to have Library nodes
as their domains/subjects.

deps points to a List of Libraries upon which the subject
library is dependent.

names is a List of strings of short library names. These
are expected to be alternative short names frequently used
to identify the library, as opposed to the long name property
string, which identifies the normal title of the library.

exports is a List of Binding nodes which represent the
procedures and macros that the given library exports.

license points to a License node that is the license of
the given Library node.

authors is a List of Person nodes that represents the
authors of the library, but not necessarily the maintainer of
the Descot metainformation.

creation points to a date time string that is the date of
creation for the library metainformation, not necessarily the
creation date of the library itself.

modified points to a date time string that represents the
date and time of the last modification made to the library
metadata, and not necessarily the date and time of the last
update to the library itself.

contact points to a single person who has claimed re-
sponsibility for maintaining the metadata of a given library.
This field must exist, and the authors property is not a
substitute.

implementation points to an Implementation node,
which identifies the implementation or language for which
the code was designed to run. This could be a literal im-
plementation, or may be an R6RS Implementation node to
represent all R6RS compliant Scheme implementations, for
example.

version is a string that identifies the version of the
library. This could be a version number such as “3.5” or
it could be something like “-Current”. The later is useful for
storing the metadata of the latest snapshot of development
for a library, such as what one might find from a CVS server.

location points to a Retrieval-method node or a node
of a type that is a sub-class of Retrieval-method. This
node should tell a Descot client how to obtain the library
itself. Notice that this is a very extensible property, and
sophisticated servers may provide new Retrieval-method
sub-classes to describe the details of library retrieval. PLT’s

88 Scheme and Functional Programming, 2009

PLaneT, for example, may have a class for libraries that are
distributed through the PLaneT packaging system.

categories points to a List of strings that are categories
or tags for the given library. These tags are assumed to be
case-insensitive for all intents and purposes.

copyright-year and copyright-owner are two parts of
the Copyright information. copyright-year points to a year
string, while copyright-owner may point to a Person or a
List of Person nodes.

3.2 Server Protocol

Descot-compatible servers follow a simple set of rules that
allow them to interact with one another. Servers handle
three types of requests: mirroring, library/node requests,
and queries. Queries are handled in Section 3.3. This section
details only mirroring and node requests.

Every server must have a mirroring URI. When a request
for this URI comes into the server, the server must respond
with the RDF graph consisting of every library node in
the server’s store with one and only one branch. That
branch must be the modified property pointing to the last
modification time of the referenced library node. In this way,
a server which is mirroring the content of another server may
identify which libraries need to be updated, and pull only
the given information into its own store.

The format of transmission should be arranged in an ap-
propriate manner by the servers or server and client. No
specific format is required, and no format need be recog-
nized.

Servers and clients may also make node requests to a
server. These are requests for the relevant information about
a given node. For example, a client may wish to obtain
the metadata for a library for some URI. It does so by
accessing the URI and parsing the response from the server.
The method of access depends on the protocol specified
by the URI. HTTP will likely be a common protocol, but
others, such as FTP, Gopher, or HTTPS could also be used.
The response should be an RDF graph in either the format
requested by the client [server] or the attempt by the server
if it does not support the requested format. (Again, the way
to request a particular format is protocol dependent, and
not specified here.)

The graph returned by a server handling a node request
contains a subset of the entire store on the server. Its root or
starting node has the URI of the request. The server should
then walk the paths going out from the requested URI in
the store and return the graph that it walks. The server
should stop pursuing a particular path when it encounters a
node which has its own unique, accessible URI that can be
requested individually. That is, the returned graph contains
the descendants or the paths starting from the node with
the URI requested, stopping at nodes which themselves
have valid URIs. Blank nodes, then, are the only means by
which the depth of the graph may grow beyond one. When
encountering a blank node while walking the graph, a server
will descend into it and continue its walk, but otherwise, the
server will not descend into a node, which will have a valid
URI if it is not a blank node.

These two request methods provide enough structure for
servers and clients to communicate clearly and efficiently.
No other behavior is required of a Descot server, though
handling query requests is permitted and defined for any
Descot server. Most servers will not handle queries, and
instead, specific Descot servers will develop to mirror smaller

servers and index them to provide a place to search many
repositories at once.

3.3 Query Server

Since Descot uses RDF to describe its metadata, it may
also utilize the tools available to RDF graphs. SPARQL is
a query language and protocol for querying RDF graphs. If
a Descot server wishes to provide Querying, then it should
follow the protocols and language laid down in the SPARQL
specification [28, 7, 2]. Implementing query request handling
for a Descot server is not required.

Query-enabled servers enable lightweight clients to inter-
act in useful and interesting ways with servers. Many sys-
tems which allow multiple repositories to be used often re-
quire that clients cache data about the repositories that it
searches. This is fine when there are only a few repositories,
but in systems where every developer may potentially have
a repository, it may not make sense to cache all the data
on every client. While nothing stops a client from caching
server data from a Descot server, lightweight clients may
use query-enabled Descot servers that mirror other reposi-
tories to search and find libraries and code which may have
been obscured if the user of the client had to find and install
repository information manually.

Query-enabled servers may thus become hubs among the
web of Descot servers, providing users the benefit of a central
repository, without many of the disadvantages.

3.4 Server API

A Server API has been developed to assist designers in
writing Descot servers easily and quickly. They can also be
utilized by scripts to assist in dealing with Descot stores.
While the current Descot source code contains a number
of additional modules, the utilities, printing, and server
modules will generally help the most.

This code is currently available via revision control, and
a packaged release will be made once some of the features
have been completed. This API is the one used by the Descot
server that runs (currently only as a proof of concept) at
the Descot homepage [18]. The API is provided to assist
developers of servers and clients, and implementors may opt
to implement the Descot protocol and specification in other
ways.

The rdf-printing module provides three procedures for
printing RDF graphs in Turtle format.

write-rdf-triple->turtle takes an RDF triple and an
optional port argument, and writes out that triple in Turtle
form. write-rdf-triples->turtle and write-rdf-graph->turtle
work the same way but take a list of triples and an RDF
graph as their first argument respectively.

The descot-rdf-utilities module defines and exports
common RDF and Descot URIs for use in other applications.
It also defines the following procedures and macros.

store-categories : 〈graph〉 → 〈category list〉
Produces from an Descot RDF graph a list of all the cate-
gories found in the store.

libraries-in-category : 〈cat〉 → 〈library list〉
Produces a list of libraries that have a category 〈cat〉.
in-rdf-list : 〈store〉 〈node〉 → #〈void〉
in-rdf-list is a foof loop [6] iterator over RDF List nodes.
It allows one to iterate over RDF lists in the same way one
might iterate over a normal Scheme list.

Scheme and Functional Programming, 2009 89

The iterator is used in for clauses of foof loops, as in,
(for elem rest (in-rdf-list store list-head-node)).

parse-turtle-file : 〈file〉 [〈graph〉] → 〈graph〉
Parses a given 〈file〉 into a given 〈graph〉 or an empty graph
if none is given.

library-ids : 〈store〉 → 〈id list〉
library-title : 〈rdf-map〉 → 〈library name〉
library-names : 〈store〉 〈rdf-map〉 → 〈name list〉
library-description : 〈rdf-map〉 → 〈desc string〉
library-copyright : 〈store〉 〈rdf-map〉 → 〈copy pair〉
library-homepage : 〈rdf-map〉 → 〈uri〉
library-license-name : 〈store〉 〈rdf-map〉 → 〈name〉
library-authors : 〈store〉 〈rdf-map〉 → 〈author list〉
library-contact : 〈store〉 〈rdf-map〉 → 〈person pair〉
library-created : 〈rdf-map〉 → 〈date string〉
library-modified : 〈rdf-map〉 → 〈date string〉
library-version : 〈rdf-map〉 → 〈version string〉
library-implementation : 〈store〉 〈rdf-map〉 → 〈impl pair〉
library-location : 〈store〉 〈rdf-map〉 → 〈location〉
The above procedures are standard accesser procedures to
different elements of a Descot library node. They can be
used to quickly get pieces of the graph instead of walking
the graph explicitly. 〈store〉 refers to the Descot store, and
〈rdf-map〉 refers to a specific RDF map containing the child
nodes of a given library node.

The actual descot-server module available in the De-
scot source provides a generalized, format-neutral API for
handling server requests. Currently, it handles node re-
quests, mirroring requests, and provides conveniences for
handling submissions of new libraries into the existing store.

The Descot Server API uses a file system hierarchy to
store the RDF graph in a manner that makes it convenient
to retrieve server request information. The entire graph is
stored under a single 〈root〉 directory, and for any subject
node with a valid URI, there exists a single file which holds
the information necessary to serve a node request for that
URI. The path to this file is formed by the following scheme:

<root>/<scheme>/<domain>/<path>[#<fragment>]

where 〈domain〉 is the domain of the URI with the terms
reversed and separated by forward slashes rather than dots.
The API provides a procedure for generating this path from
a given URI:

descot-uri->store-path : 〈uri string〉 → 〈path string〉
and also defines a parameter descot-store to hold the root
location.

The API also defines reader and writer parameters for the
store. The reader parameter descot-api-reader contains a
procedure

reader : 〈fname〉 [〈graph〉] → 〈rdf graph〉
that will read the files in the store. This allows the format of
the store to be any format for which an user can provide a
proper reader. This parameter defaults to parse-srdf-file
from the srdf module (see the Appendix).

The descot-api-triples-writer parameter holds a pro-
cedure that will be used whenever a graph must be written
to a file. It defaults to write-rdf-triples->srdf and any
procedure that replaces the default should have the same sig-
nature (see the Appendix). This writer is also used when no
preferred format is detected for an incoming node request.
Since detection of format preference is not yet built into

the API, this parameter effectively controls all RDF output
from the API, and not just the format from the store.

The above parameters are used to separate the api from
the format of the repository. They are not expected to
change after initializing a server using this API.

write-descot-request : 〈subject uri〉 〈port〉 → #〈void〉
write-descot-request handles node requests for the server
and writes out the proper response to the given 〈port〉.
write-descot-updates : 〈port〉 → #〈void〉
write-descot-updates writes out the mirroring graph to
the given port.

write-descot-store : 〈graph〉 → #〈void〉
When new libraries are submitted to a server, normally they
will go through a vetting process, after which, they must be
stored in the main repository database. write-descot-store
allows a store to be written safely to the store and is the
main procedure to use when adding new data to the store.

Since the API does not yet provide enough detailed
access to make direct graph walking along the graph easy,
a convenience procedure is exported from the server API to
allow applications to read in the entire store for work.

read-descot-store : 〈root〉 → 〈RDF graph〉
It works with any subdirectory of the root location and the
root location itself as the 〈root〉 value, so one can selectively
graph pieces of a graph if necessary.

3.5 Example

The following is a complete example of a relatively self
contained graph with all the information necessary to serve
all the node requests. It is written in the SRDF format
defined in the Appendix.

(= authors
"http://descot.sacrideo.us/rdf/authors/")

(= impls
"http://descot.sacrideo.us/rdf/impls/")

(= licenses
"http://descot.sacrideo.us/rdf/licenses/")

(= bindings
"http://descot.sacrideo.us/rdf/bindings/")

(= dscts
"http://descot.sacrideo.us/10-rdf-schema#")

(= rdf
"http://www.w3.org/1999/02/22-rdf-syntax-ns#")
(= xsd

"http://www.w3.org/2001/XMLSchema#")
(= dsct

"http://descot.sacrideo.us/rdf/libs/system/")

((: dsct "malloc#chez")
((: rdf "type") (: dscts "Library"))
((: dscts "name")
(& "Garbage Collected Malloc" en))

((: dscts "names")
(($ "malloc") ($ "gc-malloc")))

((: dscts "desc")
($ "Create malloced regions of memory that

are handled by the garbage collector."))
((: dscts "exports") ((: bindings "gc-malloc")))
((: dscts "license")
(: licenses "public-domain"))

90 Scheme and Functional Programming, 2009

((: dscts "authors") ((: authors "dybvig")))
((: dscts "creation")
(^ "2009/03/08 23:33:10" (: xsd "dateTime")))

((: dscts "modified")
(^ "2009/05/12 00:41:44" (: xsd "dateTime")))

((: dscts "copyright-year")
(^ "2008" (: xsd "gYear")))

((: dscts "copyright-owner")
(: authors "dybvig"))

((: dscts "contact") (: authors "arcfide"))
((: dscts "version") ($ "1.0"))
((: dscts "location")
(* ((: rdf "type") (: dscts "CVS"))

((: dscts "cvs-root")
($ "anoncvs@anoncvs.sacrideo.us:/cvs"))

((: dscts "cvs-module") ($ "lib/malloc.ss"))))
((: dscts "implementation") (: impls "chez"))
((: dscts "categories") (($ "system"))))

((: licenses "public-domain")
((: rdf "type") (: dscts "Licenses"))
((: dscts "name") ($ "Public Domain")))

((: bindings "gc-malloc")
((: rdf "type") (: dscts "Binding"))
((: dscts "name") ($ "malloc"))
((: dscts "desc")
($ "Garbage Collected Malloc")))

((: authors "dybvig")
((: rdf "type") (: dscts "Person"))
((: dscts "name") ($ "R. Kent Dybvig"))
((: dscts "email") ($ "dyb@scheme.com"))
((: dscts "homepage") "http://www.scheme.com"))

((: authors "arcfide")
((: rdf "type") (: dscts "Person"))
((: dscts "name") ($ "Aaron W. Hsu"))
((: dscts "email") ($ "arcfide@sacrideo.us"))
((: dscts "homepage")
"http://www.sacrideo.us"))

((: impls "chez")
((: rdf "type") (: dscts "Implementation"))
((: dscts "name") ($ "Chez Scheme"))
((: dscts "homepage") "http://www.scheme.com"))

If a node request came it, it would come for one of the
top-level s-expressions defined above. The data transmitted
back to the requesting client would be equivalent to the data
contained in that top-level s-expression. That is, if a request
for

(: dsct "malloc#chez")

came in to a server, it would return only the data found in
the s-expression above that has

(: dsct "malloc#chez")

as the first element. The server would ignore the other top-
level s-expressions.

4. Related Work
Since Descot only describes a library and does not attempt
to make it portable across implementations or languages,

efforts to make portable code, such as those from Snow [12]
and especially module systems like R6RS libraries [29] con-
tribute invaluable features to a complete repository system.

Snow is only one of many repositories that exist in
Scheme, each with its own unique features and focus. These
include library suites such as SLIB [20] and implementation-
specific repositories such as those found for PLT [26],
Chicken [31], and Bigloo [30].

Other attempts at portable library repositories include
CSAN [9] and CxAN [27]. The latter is unique because it is
not a Scheme specific project.

Implementations often support libraries internally with-
out making them into separate libraries, or they may pack-
age libraries with their distributions, which makes it in-
teresting to deal with that information. Descot is general
enough to represent these internal libraries, which almost
all Scheme implementations have, even though they are not
generally considered repositories [22, 11, 25].

Other projects have created distributed networks of
repositories quite successfully, though not specifically fo-
cused on library code distribution. The Debian packaging
system [1], often known as apt, caches server information on
the clients to enable multiple repositories to be used by one
client. The client can then download the desired packages
and install them as appropriate. System such as the RPM-
based [10] yum [14] also behave in a similiar manner. An
user specifices a series of repositories to use, and the client
caches information about the software packages available
from the repositories listed. Sites such as RPMfind [4] also
make packages available via web browser. These clients will
often scan many repositories over all different distributions
to obtain their indexes.

While the above are similiar to Descot by their dis-
tributed nature, the packages they references are actual soft-
ware packages and contain all the binaries or source code in-
side them. The BSD family of operating systems (and Gen-
too, which follows a similar pattern [13]) uses a series of
files that contain metadata about how to build and install
a given software package. Descot’s metadata representation
more closely resembles these so called ports systems than the
packaging used by systems like apt or yum. When, say, an
OpenBSD user wishes to build a package, rather than install
it via binary package, the user would navigate to a prefilled
filesystem containing port metadata. The user would then
run a command that would fetch, build, and install the pack-
age [16]. Similar tools could be made for Descot repositories.

5. Conclusion
The Descot system described above provides the means
by which fragmented or diverse communities can cooperate
and leverage development efforts that previously existed in
isolation of one another. Since most communities do not
lack for tools or repositories of code, but rather, a means
of common access, Descot focuses entirely on fostering the
communication among existing systems, rather than trying
to rewrite existing tools and change previous workflows.
Since Descot is extensible and dynamic, it can fit into a wide
range of domains, and can adapt to handle the needs of a
community, rather than trying to fit different communities
or sub-cultures into a single methodology. Descot is built on
common, well documented technologies and so should easily
travel where less standards-based systems may not. Descot
provides an open, clearly specified infrastructure so that
communities can collaborate together and avoid redundant
work. It provides the convenience of central code distribution

Scheme and Functional Programming, 2009 91

without forcing large, top-down changes on a community
that may not respond well to such pressure.

6. Acknowledgments
The author would like to thank Kent Dybvig for his com-
ments, which led to improvements in the presentation this
this paper.

References
[1] Osamu Aoki. Debian Reference, June 2009. http://www.debian.org

/doc/manuals/debian-reference/.

[2] Dave Beckett and Jeen Broekstra. Sparql query results
xml format. W3c recommendation, W3C, January 2008.
http://www.w3.org/TR/rdf-sparql-XMLres/.

[3] David Beckett and Tim Berners-Lee. Turtle - terse rdf
triple language. W3c team submission, W3C, January 2008.
http://www.w3.org/TeamSubmission/turtle/.

[4] Fabrice Bellet. Rpmfind, June 2009. http://www.rpmfind.net.

[5] Dan Brickley and R. V. Guha. Rdf vocabulary description
language 1.0: Rdf schema. W3c recommendation, W3C,
February 2004. http://www.w3.org/RDF/.

[6] Taylor Campbell. foof loop, June 2009. http://mumble.net/
˜ campbell/darcs/foof-loop/loop.scm.

[7] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres.
Sparql protocol for rdf. W3c recommendation, W3C,
January 2008. http://www.w3.org/TR/rdf-sparql-protocol/.

[8] William Clinger and Jonathan Rees. Revised4 Report
on the Algorithmic Language Scheme, September 1991.
ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/standards/r4rs.ps.gz.

[9] CSAN. Comprehensive scheme archive network, June 2009.
http://www.cliki.net/Community.

[10] Alexandre de Abreu. All you have to know about RPM,
March 2004. http://fedoranews.org/alex/tutorial/rpm/.

[11] R. Kent Dybvig. Chez Scheme Version 7 User’s Guide. Ca-
dence Research Systems, July 2007. http://www.scheme.com/csug7/.

[12] Marc Feeley. Scheme Now! Documentation, June 2009.
http://snow.iro.umontreal.ca/?tab=Documentation.

[13] Gentoo Foundation. Gentoo linux, June 2009. http://www.gentoo.org.

[14] Michael Hideo. Red Hat Enterprise Linux 5 De-
ployment Guide. Red Hat Inc., Raleigh, NC, 5 edi-
tion, November 2008. http://www.redhat.com/docs/en-
US/Red Hat Enterprise Linux/5/html/Deployment
Guide/index.html.

[15] Jarkko Hietaniemi. Comprehensive perl archive network.
http://www.cpan.org.

[16] Nick Holland. The OpenBSD packages and ports system.
OpenBSD, May 2009. http://www.openbsd.org.

[17] Aaron W. Hsu. Descot rdf schema. Rdf schema, May 2009.
http://descot.sacrideo.us/10-rdf-schema.

[18] Aaron W. Hsu. Descot technical documentation. Program-
mer’s documentation, May 2009. http://descot.sacrideo.us.

[19] IEEE. 1178-1990 IEEE Standard for the Scheme Program-
ming Lanuage, 1990.

[20] Aubrey Jaffer. SLIB: The Portable Scheme Library, Febru-
ary 2008. http://people.csail.mit.edu/jaffer/slib toc.html.

[21] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 Report on the Algorithmic Language Scheme,
February 1998. http://www.schemers.org/Documents/Standards
/R5RS/r5rs.ps.

[22] Richard Kelsey, Jonathan Rees, and Mike Sperber. The In-
complete Scheme 48 Reference Manual for release 1.8, Jan-
uary 2008. http://www.s48.org/1.8/manual/manual.html.

[23] Oleg Kiselyov. Scheme hash, June 2009. http://okmij.org/ftp/Scheme.

[24] Frank Manola and Eric Miller. Rdf primer. W3c recommen-
dation, W3C, February 2004. http://www.w3.org/TR/rdf-

primer/.

[25] Massachusetts Institute of Technology. MIT/GNU Scheme
7.7.90+ Reference Manual, 2008. http://www.gnu.org/software/mit-
scheme/documentation/mit-scheme-ref/index.html.

[26] Jacob Matthews. PLaneT: Automatic package distribution.
Reference Manual PLT-TR2009-planet-v4.2, PLT Scheme
Inc., June 2009. http://plt-scheme.org/techreports/.

[27] Hans Oesterholt. Cxan, July 2004. http://cxan.sourceforge.net/.

[28] Eric Prud’hommeaux and Andy Seaborne. Sparql query
language for rdf. W3c recommendation, W3C, January
2008. http://www.w3.org/TR/rdf-sparql-query/.

[29] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton
van Straaten. Revised6 Report on the Algorithmic Language
Scheme, September 2007. http://www.r6rs.org/final/r6rs.pdf.

[30] Vladimir Tsichevski. Bigloo libraries, December 2003.
http://bigloo-lib.sourceforge.net/.

[31] Felix Winkelmann. The CHICKEN User’s Manual, April
2009. http://chicken.wiki.br/man/4/The User’s Manual.

92 Scheme and Functional Programming, 2009

Appendix: SRDF Format
SRDF is an s-expression based format for describing RDF
graphs. It is meant to be mostly equivalent in its form
to Turtle. Since the language is S-expression based, it is
easier for Scheme and Lisp parsers to parse it. Parsers
for other languages can also be written very easily. This
makes it particularly nice for use in automated systems or
in areas where S-expressions are the natural representation
format. SRDF is designed to work for most Scheme’s read
procedures.

SRDF documents are composed of a series of RDF triples
and, possibly, prefix definitions. Prefixes take the form (=
name "uri"), and associate a given Scheme symbol with a
URI string. Otherwise, the form is an RDF triple or a set of
triples.

Normal triples are just a list of three elements, each a
URI. Multiple triples with the same subject can be declared
in one expression by replacing the list that would hold the
single predicate and object with a list of such predicates
and objects. Likewise, one can specify more objects to be
associated with a given subject and predicate by doing the
same thing with the object list, and replacing the list tail
that would normally hold the object with a list of such
objects.

If the second element of a predicate pair contains a list of
objects, this represents a collection of objects, and is created
in the same way that a turtle collection syntax is created: by
associating a series of blank nodes with the right predicates
with each of the objects listed.

An object that differs from a list of objects that are each
associated with the subject and predicate. The following is
an instance of the former:

("subject-uri" "predicate-uri"
("object1" "object2" ...))

Whereas the following is an instance of the latter:

("subject-uri" "predicate-uri"
"object1"
"object2"
"object3")

Normal RDF triples take the form:

("subject-uri" "predicate-uri" "object-uri")

A blank node may be inlined into the graph by using a ‘*’
as the beginning symbol in an object context like so:

("subject" "pred" (* "pred" "object"))

Of course, blank nodes may have anything that is a valid
predicate cdr as its cdr so the following is also valid:

("subject" "pred"
(* ("pred1" "object1") ("pred2" "object2")))

URIs may be described by their full path names as strings, as
prefix combined paths, or as blank node paths. The following
are all valid URIs:

"http://some.domain/path/to#blah"
"blah"
(: prefix "blah")
(_ "uniqueid")

We use ‘:’ for prefixes and ‘ ’ for blank nodes. In addition
to URIs, we permit literals as valid cars for objects. Lit-
erals can be strings, numbers, booleans, or may be strings

with either languages or types associated with them. The
following are examples of languages and types, respectively:

($ "Language unspecified.")
(& "English Sentence lies here." en)
(^ "2008/01/03 14:00" (: xsd "date"))

The following is a fairly formal BNF grammar with the
exception of tokens such as strings, numbers, and booleans
being undefined and presumed to be defined lexical values.
Additionally, we define S-expression in terms of atoms and
pairs, so the BNF grammar is also defined in the “longhand”
notation for pairs and lists. This means that while the
BNF Grammar states something like ("subj" . ("pred"
. ("obj" . ()))) as the valid simplistic RDF triple, it is
also legal in practice to use the shorthand version of this:
("subj" "pred" "obj")

〈rdf sexp〉→ 〈rdf triple〉 | 〈rdf triple〉 〈rdf sexp〉
〈rdf triple〉→ ‘(’ 〈uri〉 ‘.’ 〈rdf subject tail〉 ‘)’

| ‘(’ ‘=’ name string ‘)’

〈rdf subject tail→ 〈rdf predicate〉
| 〈rdf predicate list〉

〈rdf pred list〉→ ‘()’
| ‘(’ 〈rdf predicate〉 ‘.’ 〈rdf pred list〉 ‘)’

〈rdf predicate〉→ ‘(’ 〈uri〉 ‘.’ 〈rdf object list〉 ‘)’

〈rdf object list〉→ ‘()’
| ‘(’ 〈rdf object〉 ‘.’ 〈rdf object list〉 ‘)’

〈rdf object〉→ 〈uri〉 | 〈literal〉
| 〈rdf object list〉 | 〈blank node list〉

〈blank node list〉→ ‘(’ ‘*’ ‘.’ 〈rdf subject tail〉 ‘)’

〈uri〉→ uri
| ‘(’ ‘:’ ‘.’ 〈uri list〉 ‘)’
| ‘(’ ‘ ’ name ‘)’

〈uri list〉→ ‘()’
| ‘(’ 〈uri name〉 ‘.’ 〈uri list〉 ‘)’

〈uri name〉→ uri | name

〈literal〉→ number | boolean
| ‘(’ ‘$’ string ‘)’
| ‘(’ ‘&’ string name ‘)’
| ‘(’ ‘ˆ’ string 〈uri〉 ‘)’

Scheme and Functional Programming, 2009 93

Keyword and Optional Arguments in PLT Scheme

Matthew Flatt
University of Utah and PLT

mflatt@cs.utah.edu

Eli Barzilay
Northeastern University and PLT

eli@ccs.neu.edu

Abstract
The lambda and procedure-application forms in PLT Scheme sup-
port arguments that are tagged with keywords, instead of identified
by position, as well as optional arguments with default values. Un-
like previous keyword-argument systems for Scheme, a keyword
is not self-quoting as an expression, and keyword arguments use
a different calling convention than non-keyword arguments. Con-
sequently, a keyword serves more reliably (e.g., in terms of error
reporting) as a lightweight syntactic delimiter on procedure argu-
ments. Our design requires no changes to the PLT Scheme core
compiler, because lambda and application forms that support key-
words are implemented by macros over conventional core forms
that lack keyword support.

1. Using Keyword and Optional Arguments
A rich programming language offers many ways to abstract and
parameterize code. In Scheme, first-class procedures are the pri-
mary means of abstraction, and procedures are unquestionably the
right vehicle for parameterizing code with respect to a few run-time
values. For parameterization over larger sets of values, however,
Scheme procedures quickly become inconvenient.

Keyword and optional arguments support tasks that need more
arguments than fit comfortably into procedures, but where radia-
cally different forms—such as unit or class in PLT Scheme—
are too heavyweight conceptually and notationally. At the same
time, keyword and optional arguments offer a smooth extension
path for existing procedure-based APIs. Keyword arguments can
be added to a procedure to extend its functionality without bind-
ing a new identifier (which always carries the danger of colliding
with other bindings) and in a way that composes with other such
extensions.

Keyword arguments in PLT Scheme are supported through a
straightforward extension of the lambda, define, and applica-
tion forms. Lexically, a keyword starts with #: and continues in the
same way as an identifier; for example, #:color is a keyword.1

A keyword is associated with a formal or actual argument by
placing the keyword before the argument name or expression. For
example, a rectangle procedure that accepts two by-position
arguments and one argument with the #:color keyword can be
written as

1 See Section 7.7 for a discussion on this choice of keyword syntax.

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

(define rectangle
(lambda (width height #:color color)
....))

or
(define (rectangle width height #:color color)
....)

This rectangle procedure could be called as
(rectangle 10 20 #:color "blue")

A keyword argument can be in any position relative to other argu-
ments, so the following two calls are equivalent to the preceding
one:
(rectangle #:color "blue" 10 20)
(rectangle 10 #:color "blue" 20)

The #:color formal argument could have been in any position
among the arguments in the definition of rectangle, as well. In
general, keyword arguments are designed to look the same in both
the declaration and application of a procedure.

In a procedure declaration, a formal argument can be paired
with a default-value expression using a set of parentheses—or,
by convention, square brackets. The notation for a default-value
expression is the same whether the argument is by-position or by-
keyword. For example, a rectangle’s height might default to its
width and its color default to pink:
(define (rectangle width

[height width]
#:color [color "pink"])

....)

This revised rectangle procedure could be called in any of the
following ways:
(rectangle 10)
(rectangle 10 20)
(rectangle 10 20 #:color "blue")
(rectangle 10 #:color "blue")
(rectangle #:color "blue" 10 20)
(rectangle #:color "blue" 10)
(rectangle 10 #:color "blue" 20)

Our goals in a design for keyword and optional arguments
include providing especially clear error messages and enforcing a
consistent syntax for keyword arguments. Toward these goals, two
aspects of our design set it apart from previous approaches in Lisp
and Scheme:

• Keywords are distinct from symbols, and they are not self-
quoting as expressions.

For example, the form
#:color

in an expression position is a syntax error, while
(rectangle #:color "blue")

94

is a call to rectanglewith the #:color argument "blue".
In the latter case, the procedure-application form treats the
#:color keyword as an argument tag, and not as an expres-
sion. Every keyword in an application must be followed by a
value expression, so the form

(rectangle #:color #:filled? #f)

is rejected as a syntax error, because #:color lacks an ar-
gument expression; if keywords could be expressions, the call
would be ambiguous, because #:filled? might be intended
as the #:color argument to rectangle.
• Keywords are not passed as normal arguments to arbitrary pro-

cedures, where they might be confused with regular procedure
arguments. Instead, a different calling convention is used for
keyword arguments.

For example,
(cons #:color "blue")

does not create a pair whose first element is a keyword and
second element is a string. Evaluating this expression instead
reports a run-time error that cons does not expect keyword
arguments.

Although a keyword is not self-quoting as an expression, a
keyword is a first-class value in PLT Scheme. A keyword can be
quoted to produce a valid expression, as in ’#:color and (cons
’#:color "blue"), where the latter creates a pair whose first
element is a keyword. Keyword values and quoted-keyword expres-
sions are useful for creating a procedure that accepts arbitrary key-
word arguments and processes them explicitly. Keyword values are
also useful in reflective operations that inspect the keyword require-
ments of a procedure. By convention, PLT Scheme programmers
do not use keywords for run-time enumerations and flags, leaving
those roles to symbols and reserving keywords for syntactic roles.

The rest of the paper proceeds as follows. Section 2 describes
the syntax and semantics of keyword and optional arguments in
PLT Scheme. Section 4 describes our implementation of keyword
arguments. Section 5 provides some information on the perfor-
mance of keyword and optional arguments. Section 6 reports on
our experience using keywords in PLT Scheme. Section 7 describes
previous designs for keywords in Lisp and Scheme and relates them
to our design.

2. Syntax and Semantics
Figure 1 shows the full syntax of PLT Scheme’s lambda. In a
〈kw-formals〉, all 〈id〉s must be distinct, including 〈rest-id〉, and
all 〈keyword〉s must be distinct. A required non-keyword argument
(i.e., the first case of 〈formal-arg〉) must not follow an optional non-
keyword argument (i.e., the second case of 〈formal-arg〉).

A lambda form that is constructed using only the 〈id〉 form of
〈fomal-arg〉 has the same meaning as in standard Scheme (Sperber
2007). A lambda form that uses only the 〈id〉 and [〈id〉 〈default-
expr〉] forms of 〈formal-arg〉 can be converted to an equivalent
case-lambda form; the appendix shows the conversion pre-
cisely in terms of syntax-rules. For each optional argument
that is not supplied in an application of the procedure, the corre-
sponding 〈default-expr〉 is evaluated just before the procedure body
is evaluated. The environment of each 〈default-expr〉 includes the
preceding arguments, and if multiple 〈default-expr〉s are evaluated,
then they are evaluated in the order that they are declared. When
a “rest argument” is declared after optional arguments, arguments
in an application are first consumed by the optional-argument po-
sitions, so the rest argument is non-empty only when more argu-
ments are provided that the total number of required and optional
arguments.

(lambda 〈kw-formals〉 〈body〉 ...+)

〈kw-formals〉 = (〈formal-arg〉 ...)
| (〈formal-arg〉 ...+ . 〈rest-id〉)
| 〈rest-id〉

〈formal-arg〉 = 〈id〉
| [〈id〉 〈default-expr〉]
| 〈keyword〉 〈id〉
| 〈keyword〉 [〈id〉 〈default-expr〉]

... means “zero or more,” ...+ means “one or more,” 〈id〉 or 〈rest-id〉
matches an identifier, 〈expr〉 or 〈default-expr〉 matches an expression,
〈keyword〉 matches a keyword, and 〈body〉 matches a definition or
expression in an internal-definition context

Figure 1: Extended grammar for lambda

(〈proc-expr〉 〈actual-arg〉 ...+)
〈actual-arg〉 = 〈expr〉

| 〈keyword〉 〈expr〉

Figure 2: Extended grammar for procedure application

> (define polygon
(lambda (n [side-len (/ 12 n)] . options)
(list n side-len options)))

> (polygon)
procedure polygon: no clause matching 0 arguments
> (polygon 3)
(3 4 ())
> (polygon 3 7)
(3 7 ())
> (polygon 3 7 ’solid ’smooth)
(3 7 (solid smooth))

When the 〈keyword〉 〈id〉 or 〈keyword〉 [〈id〉 〈default-expr〉]
forms of 〈formal-arg〉 are used to construct a lambda expres-
sion, the resulting procedure accepts keyword-tagged arguments
in addition to the arguments that would be accepted without the
keyword-tagged arguments. Arguments using the 〈keyword〉 〈id〉
form are required, while arguments using the 〈keyword〉 [〈id〉
〈default-expr〉] form are optional. As with the keywordless [〈id〉
〈default-expr〉] form, each keyword-tagged 〈default-expr〉 is eval-
uated for a given application of the procedure if no actual argument
is tagged with the corresponding 〈keyword〉, and the preceding ar-
gument 〈id〉s are in the environment of each 〈default-expr〉. When
〈default-expr〉s are evaluated for multiple arguments, they are eval-
uated in the order declared in the lambda expression, independent
of whether the arguments have a keyword tag or the order of key-
word tags on actual arguments. Actual arguments that are tagged
with a keyword can be supplied in any order with respect to each
other and with respect to by-position arguments.
> (define polygon

(lambda (n [side-len (/ 12 n)]
#:color [color "blue"]
#:rotate theta
. options)

(list n side-len color theta options)))
> (polygon 4)
polygon: requires an argument with keyword #:rotate, not
supplied; arguments were: 4
> (polygon 4 #:rotate 0)
(4 3 "blue" 0 ())
> (polygon 4 7 #:rotate 0 #:color "red" ’solid)
(4 7 "red" 0 (solid))

Scheme and Functional Programming, 2009 95

The above examples use the extended syntax of procedure ap-
plications shown in Figure 2, which allows arguments tagged with
keywords. Each 〈keyword〉 in an application must be distinct. Cru-
cially, the grammar of 〈expr〉 in PLT Scheme (not shown here) does
not include an unquoted 〈keyword〉, so the grammar for procedure
application is unambiguous.

Naturally, the result of 〈proc-expr〉 in an application must be a
procedure. For each keywordless argument 〈expr〉, the result is de-
livered to the procedure as a by-position argument, while each other
〈expr〉 is provided with the associated 〈keyword〉. PLT Scheme al-
ways evaluates the sub-expressions of a procedure application left-
to-right, independent of whether the argument is tagged with a key-
word. If the applied procedure evaluates 〈default-expr〉s for unsup-
plied arguments, it does so only after all of the 〈expr〉s in the proce-
dure application are evaluated. Similarly, the expected and supplied
arguments (in terms of arity and keywords) are checked after all
of the argument 〈expr〉s are evaluated but before the any 〈default-
expr〉s would be evaluated (so no 〈default-expr〉s are evaluated if
the number of supplied by-position arguments is wrong, if a re-
quired keyword argument is missing, or if an unexpected keyword
is supplied).

The define shorthand for procedure is extended in the obvi-
ous way to support keyword and optional arguments. PLT Scheme
also supports the MIT curried-function shorthand, which composes
seamlessly with keyword and optional arguments.
> (define ((rect w [h w] #:color [c "pink"])

canvas x y)
(set-pen-color! canvas c)
(draw-rectangle! canvas x y w h))

> ((rect 10 #:color "blue") screen 0 0)

In addition to the lambda, define, and application syntac-
tic forms, our design extends and adds a few procedures. An ex-
tended apply procedure accepts arbitrary keyword arguments,
and it propagates them to the given procedure.
> (apply polygon 4 7 #:rotate 0 ’(solid smooth))
(4 7 "blue" 0 (solid smooth))

Keyword arguments to apply are analogous to arguments between
the procedure and list argument in the standard apply; that is,
they are propagated directly as provided. The keyword-apply
procedure generalizes apply to accept a list of keywords and a
parallel list of values, which are analogous to the last argument of
apply.
> (keyword-apply polygon

’(#:color #:rotate)
’("blue" 0)
4 7
’(solid smooth))

(4 7 "blue" 0 (solid smooth))

The list of keywords supplied to keyword-applymust be sorted
alphabetically, for reasons explained in Section 4.

The make-keyword-procedure procedure constructs a
procedure like apply that accepts arbitrary keyword arguments.
The argument to make-keyword-procedure is a procedure
that accepts a list of keywords for supplied arguments, a parallel
list of values for the supplied keywords, and then any number of
by-position arguments.
> (define trace-call

(make-keyword-procedure
(lambda (kws kw-vals proc . args)

(printf ">>∼s ∼s ∼s<<\n" kws kw-vals args)
(keyword-apply proc kws kw-vals args))))

> (trace-call polygon 6 #:rotate 0)
>>(#:rotate) (0) (6)<<
(6 2 "blue" 0 ())

Finally, the reflection operations procedure-arity and
procedure-reduce-arity in PLT Scheme inspect or restrict
the arity of a procedure. The additional procedures procedure-
keywords and procedure-reduce-keyword-arity ex-
tend the set of reflection operators to support keywords. The
procedure-keywords procedure reports the keywords that
are required and allowed by a given procedure. The procedure-
reduce-keyword-arity procedure converts a given proce-
dure with optional keyword arguments to one that allows fewer of
the optional arguments and/or makes some of them required. A typ-
ical use of procedure-reduce-keyword-arity adjusts the
result of make-keyword-procedure (for which all keywords
are optional) to give it a more specific interface.

PLT Scheme does not extend case-lambda to support key-
word or optional arguments; the extension would be straightfor-
ward, but there has been no demand. Similarly, continuations in
PLT Scheme do not support keyword arguments. Extended vari-
ants of call-with-values, values, and call/cc proce-
dures could support keyword results and continuations that ac-
cept keyword arguments. We have not tried that generalization, but
an implementation could use continuation marks (Clements and
Felleisen 2004) that are installed by call-with-values and
used by values and call/cc to connect a keyword-accepting
continuation with its application or capture.

3. Keywords in Other Syntactic Forms
The PLT Scheme macro system treats keywords in the same way
as a number or a boolean. For example, a pattern for a macro can
match a literal keyword:
(define-syntax show
(syntax-rules ()
[(_ #:canvas c expr ...)
(call-with-canvas c (lambda () expr ...))]
[(_ expr ...)
(show #:canvas default-canvas expr ...)]))

This macro recognizes an optional #:canvas specification be-
fore a sequence of drawing expressions to select the target of the
drawing operations. For example, the first pattern in the syntax-
rules form matches
(show #:canvas my-canvas (draw-point! 0 0))

while the second clause matches
(show (draw-point! 0 0))

The second clause also matches
(show #:dest my-canvas (draw-point! 0 0))

in which case #:dest is used as an expression, and a syntax error
after expansion reports the misuse of #:dest. That is, the pattern
matcher for macros does not constrain arbitrary pattern variables
against matching literal keywords. The error message “#:dest
is not an expression” is less clear than “the show form expects
#:canvas and does not recognize #:dest,” and a syntax-
case implementation of #:draw could more thoroughly check
its sub-forms. Similarly, the first clause in the show macro does
not match
(show (draw-point! 0 0) #:canvas my-canvas)

since it recognizes #:canvas only at the beginning of the form.
Again, a syntax-case implementation of show could allow
#:canvas in later positions, if desired.2

2 A better solution would be a variant of syntax-rules that handles
keyword constraints and ordering automatically—along with related con-
straints, such as requiring an identifier.

96 Scheme and Functional Programming, 2009

(define-struct 〈id〉 (〈field〉 ...) 〈struct-option〉 ...)

〈field〉 = 〈field-id〉
| [〈field-id〉 〈field-option〉 ...]

〈struct-option〉 = #:super 〈super-expr〉
| #:auto-value 〈auto-expr〉
| #:property 〈prop-expr〉 〈val-exr〉
| #:transparent

〈field-option〉 = #:mutable
| #:auto

Figure 3: Partial grammar for PLT Scheme’s define-struct

Syntactic forms in PLT Scheme that use keywords include the
define-struct form and the ->* contract constructor. Both
are typical in that they allow keywords only in specific places
(instead of anywhere between the form’s parentheses). For ex-
ample, the syntax of define-struct is shown in Figure 3,
where keyword-tagged options appear only within 〈field〉s and after
the 〈field〉 sequence. In the allowed positions, however, keywords
are used in a more flexible way than in an application form; the
#:transparent, #:mutable, and #:auto keywords need
no corresponding argument expression, while the #:property
keyword is followed by two expressions. This combination of con-
straints (i.e., requiring keywords in certain positions) and general-
izations (i.e., allowing different numbers of expressions associated
with a keyword) compared to procedure application is the preroga-
tive of a syntactic form.

At the same time, define-struct relies on the prohibition
of unquoted keywords as expressions to provide good error mes-
sages when parsing a set of 〈struct-option〉s, such as when the
#:super keyword lacks a corresponding expression before the
next keyword. The consistent role of keywords as non-expression
delimiters has encouraged the use of keywords within syntactic
forms for PLT Scheme.

4. Implementation
Although lambda and the procedure-application form in PLT
Scheme support keyword and optional arguments, the core com-
piler does not directly support them. Instead, support for keyword
and optional arguments is implemented as a macro in a library, in
the same way that unit and class are implemented as macros
over the core lambda form. The only core support for keywords
is a keyword datatype and reader syntax.

The library is implemented so that the keyword-supporting ap-
plication form is equivalent to the core application form when no
keywords are supplied, and a lambda form with no keyword or
optional arguments is equivalent to the core lambda form. Fur-
thermore, a procedure with only optional keyword arguments can
be called through the core application form. These constraints on
the design preserve the performance of keywordless procedure ap-
plications and provide good interoperability between libraries that
use and do not use keyword-supporting syntactic forms.

A PLT Scheme library can implement an extended application
form, because an application form implicitly uses the #%app bind-
ing in its lexical environment. For example, in
(require (rename-in scheme [#%app orig-#%app]))
(define-syntax-rule (#%app expr ...)
(begin
(orig-#%app printf "at ∼s\n" ’(expr ...))
(orig-#%app expr ...)))

(+ 1 (+ 2 3))

each application of + prints debugging information before evaluat-
ing the application:
at (+ 1 (+ 2 3))
at (+ 2 3)
6

The library that implements keyword and optional arguments
supplies an #%app macro in addition to lambda and define
to replace the core bindings. The replacement macros expand a
keyword-supporting lambda, #%app, or define into a combi-
nation of primitive forms and run-time functions (such as make-
keyword-procedure) that implement keyword arguments.

To allow procedures with optional keywords to be applied
through the core application form, the implementation relies on
a second PLT Scheme facility that predates support for keywords:
applicable structure types. When the core application form encoun-
ters a value to apply that is not a procedure, it checks whether the
value is an instance of a structure type that has an associated appli-
cation operation (which is itself represented as a procedure). If so,
it uses the associated operation to apply the structure to the given
arguments. For example, another way to create noisy procedure
applications is to wrap the base procedure in a traced structure:
(define-struct traced (f)
#:property prop:procedure ; => applicable

(lambda (t . args)
(let ([f (traced-f t)])
(printf "∼s\n" (cons f args))
(apply f args))))

(define traced-cons (make-traced cons))
(traced-cons 1 2)

Internally, the keyword-handling part of a procedure is repre-
sented by a core procedure that accepts a list of keywords, a list
of corresponding values, and then the by-position arguments—just
like a procedure given to make-keyword-procedure. This in-
ternal representation is wrapped in an applicable structure, where
the application operation (which is used by a non-keyword appli-
cation form) calls the internal procedure with empty keyword and
keyword-value lists. The application form with keywords, mean-
while, extracts the internal procedure and applies it to non-empty
keyword and value lists. The list of keywords is always sorted al-
phabetically, so that the supplied keywords can be checked against
an expected set without sorting or searching when the internal pro-
cedure is called. The internal procedure is not directly accessible,
since it is wrapped in an opaque structure.

The keyword-supporting application form sorts a set of supplied
keywords at compile time. Compile-time sorting is possible be-
cause keywords in an application are statically apparent; keywords
that act as argument tags are syntactic literals, while expressions
that produce keyword values are never treated as argument tags.
The list of keywords also can be allocated once per call site (as
a quoted list of keywords), while the list of corresponding values
must be allocated for each call. This detail explains why the inter-
nal representation of a keyword-accepting procedure accepts a list
of keywords separate from the list of arguments.

Finally, an applicable structure that represents a keyword pro-
cedure has an associated property to generates a string description
of the procedure’s arity and expected keywords. This property is
used when a procedure that accepts only optional keyword argu-
ments is applied to the wrong number of by-position arguments. In
that case, the arity-mismatch error not only describes the expected
number of by-position arguments, but also the optional keyword ar-
guments. This arity-description property is built into the run-time
system, since it must be used when reporting an arity mismatch
from the core application form.

Scheme and Functional Programming, 2009 97

5. Performance
In PLT Scheme, application of a keyword-accepting procedure is
somewhat slower than a keywordless procedure, but the design
presented here significantly outperforms our earlier, more conven-
tional implementation. The performance cost relative to plain pro-
cedures has several causes: applications without optional keywords
must extract a procedure from an applicable structure; keyword ar-
guments are always collected into a list; keyword arguments must
be checked against the expected set of keywords; and the com-
piler currently cannot inline keyword-accepting procedures. Proce-
dures with optional (but no keyword) arguments expand to case-
lambda, in which case the relative cost is lower (no applicable
structure, no keyword checking, and not collecting arguments into a
list), but the compiler currently does not inline multi-clause case-
lambda procedures.

The following loops serve as rough micro-benchmarks:
; A plain procedure
(define (sub1 n) (- n 1))
(let loop ([n 10000000])
(unless (zero? n) (loop (sub1 n))))

; With an optional argument
(define (sub1/opt [n 0]) (- n 1))
(let loop ([n 10000000])
(unless (zero? n) (loop (sub1/opt n))))

; With unsupplied keyword argument
(define (sub1/kw/unused n #:m [m 1]) (- n m))
(let loop ([n 10000000])
(unless (zero? n) (loop (sub1/kw/unused n))))

; Pass the argument in a list
(define (sub1/list nl) (- (car nl) 1))
(let loop ([n 10000000])
(unless (zero? n) (loop (sub1/list (list n)))))

; With a required keyword argument
(define (sub1/kw #:n n) (- n 1))
(let loop ([n 10000000])
(unless (zero? n) (loop (sub1/kw #:n n))))

; Required and unsupplied optional
(define (sub1/kw2 #:n n #:m [m 1]) (- n m))
(let loop ([n 10000000])
(unless (zero? n) (loop (sub1/kw2 #:n n))))

; Many optional keywords
(define (sub1/kws #:a [a 0] #:n [n 5]

#:q [q 0] #:z [z 1])
(- n z))

(let loop ([n 10000000])
(unless (zero? n)
(loop (sub1/kw4 #:n n #:z 1))))

Since the variations of sub1 merely perform a fixnum subtraction
that will be inlined by the compiler, the micro-benchmarks compare
just the overhead of different forms of procedure application. The
run times for these versions are shown in Figure 4. For those
runs, the benchmarks are executed outside of a module, where
the compiler cannot inline definitions (but it can still inline the
subtraction operation).

The “optional” case demonstrates the cost of case-lambda
versus lambda, while the “unused keyword” case demonstrates
the overhead of an applicable structure. The “list” case demon-
strates the overhead of putting a single argument into a list and
extracting it in the called function, as happens to a keyword ar-
gument in our implementation. The “keyword” case demonstrates
the additional overhead of checking provided keyword arguments
against the expected set. The “keywords and unused” case demon-

program CPU time (msec) relative
plain 327 1.0

optional 348 1.0
unused keyword 784 2.3

list 503 1.5
keyword 1115 3.4

required plus optional 1470 4.4
many optional 1999 6.1

Figure 4: Micro-benchmark results for PLT Scheme 4.2.1, on an
2GHz Core Duo MackBook running Mac OS X 10.5.7; results are
median run times over three runs as measured using the time form

implementation plain ...hide keywords ...hide many kws
PLT 48 327 1115 1103 1999

Old PLT 48 327 2869 2866 7891
Gambit-C, default 221 222 989 992 1437

Gambit-C, fast 43 118 897 930 1287
Chicken, default 1066 1079 2478 2502 7881

Chicken, fast 8 353 1203 1430 4529
R6RS, Ikarus 100 100 130* 1237 2054

R6RS, Larceny 66 143 66* 2237 4752
R6RS, PLT 50 361 50* 4644 9001

SBCL 126 217 232 332 473
Allegro CL 150 230 450 520 780

Figure 5: Micro-benchmark results on an 2GHz Core Duo
MackBook running Mac OS X 10.5.7; PLT Scheme version
4.2.1; Gambit-C version 4.4.0, with (declare (standard-
bindings) (block) (fixnum) (not safe)) for the
“fast” variant; Chicken version 4.0.0 with the -Ob compiler
flag for the “fast” variant; Ikarus version 0.0.4-rc1+ revi-
sion 1827; Larceny version 0.97b1; SBCL version 1.0.23; Al-
lego CL express edition version 8.1; both SBCL and Alllegro
CL use (declaim (optimize (speed 3) (safety 1)
(space 0) (debug 0))); results are median run times over
three runs as measured using a time form

strates how the checking overhead grows with both required and
optional keywords, and the “many optional” case demonstrates how
the overhead grows as additional optional keywords are added.

As a further check on the performance of our keyword imple-
mentation, we provide a comparison to several other implementa-
tions:

• An older and more conventional implementation of keyword
arguments in PLT Scheme, where keywords are self-quoting
and keywords are passed as normal procedure arguments.
• Keyword-argument support as provided by Gambit-C (Feeley

2009) and Chicken (Winkelmann et al. 2009), first with the de-
fault compiler settings, and then with settings for faster perfor-
mance.
• Eddington’s R6RS library for keyword procedures3 as run in

Ikarus (Ghuloum 2009), Larceny (Clinger et al. 2009), and PLT
Scheme.
• SBCL (SBCL 2009) and Allego CL (Franz, Inc. 2009) using

Common Lisp standard keyword functions (Steele 1990).

For each implementation, Figure 5 reports run times for the plain,
single-keyword, and many-keyword micro-benchmarks. The plain
and single-keyword benchmarks are each run in two ways: one

3 http://bazaar.launchpad.net/˜derick-eddington/
scheme-libraries/xitomatl/files, revision 180

98 Scheme and Functional Programming, 2009

with a direct use of a defined function within a compilation unit
(e.g., within a module), and another where the function name is
defined as #f and then set!ed to the function (or, in the case of
Common Lisp, setfed and then called via funcall). The latter
corresponds to the ...hide column, and the intent is to defeat inlining
and other static analyses. We measure this difference because our
approach to implementing keywords, if ported to other systems,
might discourage static analysis. For similar reasons, we check
the effect of different compiler settings in Gambit-C and Chicken.
In the R6RS cases, the non-...hide case for keywords is special,
because it works in the opposite direction: it uses a define/kw
form that binds a macro to statically convert keyword arguments to
by-position arguments at the call site.

Not surprisingly, Common Lisp implementations perform key-
word applications with the lowest overhead relative to plain appli-
cations. Keywords in Common Lisp are standard and widely used,
so implementors are motivated to tune their compilers for key-
word arguments. Along similar lines, the result for the new key-
word system in PLT Scheme reflects a 30% speed boost from a
JIT-specialized primitive that fits the structure-unpacking needs of
a keyword application (although the JIT is oblivious to the use of
this primitive for keyword applications). Overall, the results illus-
trate that keywords in PLT Scheme have a typical overhead, even
while providing a better separation of keyword arguments from by-
position arguments and providing more flexibility in the placement
of keyword arguments relative to by-position arguments.

As the first row in Figure 5 shows, the PLT Scheme compiler can
greatly improve performance through procedure inlining, but inlin-
ing is not currently available for procedures that accept keywords.
The performance of inlining could be recovered with a form anal-
ogous to define/kw in Eddington’s R6RS library, which binds
the name of a keyword-accepting procedure to an identifier macro.
The macro expands direct applications of the keyword-accepting
procedure to call a plain procedure—statically converting keyword
arguments into by-position arguments, and thus enabling the usual
inlining optimizations for plain procedures. Note that keyword ar-
guments always can be detected statically by such a macro with our
design, since keywords are a syntactic part of a keyword applica-
tion, instead of dynamically detected as expression results. The per-
formance of keyword applications without macros has been good
enough, however, that we have not yet explored this approach.

6. Experience
Support for optional arguments was one of the first macros that we
included in PLT Scheme. We managed, however, to avoid support-
ing keyword arguments for over a decade. The protocol for key-
word arguments seemed inherently complex, so we tried to live
without them.

Eventually, however, we ended up with too many functions
consuming too many optional arguments, where supplying the
nth optional argument required supplying also the n-1 preceding
optional arguments. We also created many functions that were
small, non-composable variations of each other. For example,
Slideshow (Findler and Flatt 2004) provided a slide function for
generating a slide, a slide/title function for generating a slide
with a title, a slide/center for generating a slide with centered
content, and a slide/title/center function for generating a
slide with a title and centered content. Further variations of slide
included three slashes.

Our initial design for keywords in PLT Scheme was based on
Common Lisp, but with even more extensions and with some at-
tempts to clean up the mingling of keywords and rest arguments.
For example, while an argument tagged with #:rest includes
any supplied keyword arguments (analogous to Common Lisp),
an argument tagged with #:body includes only extra arguments

that follow keyword arguments—and those extra arguments need
not have keywords. We used #:body frequently; for example, a
keyword-based slide procedure must accept keywords for con-
figuration but arbitrary rest arguments for the content of the slide.

Many other beautiful generalizations in our initial keyword sys-
tem, such as the ability to nest optional and keyword syntax in place
of a #:body identifier, went completely unused. Worse, concerns
with error messages and with accidental consumption of keywords
as arguments lead to a relatively restrained use of keywords in our
libraries. To some degree, the complexity of the syntax for defining
keyword-accepting procedures (and notably its lack of connection
to the application syntax) also limited adoption. Finally, having to
import an extra library to obtain the keyword-supporting lambda
form was a significant obstacle.

The design presented here arose from an effort to make keyword
arguments more widely acceptable in PLT Scheme: to simplify
their semantics, to streamline their syntax, and to integrate them
into our main dialect of Scheme. Subjectively, the design feels
right, and we now use keyword arguments in many more functions
and in parts of the language that are closer to the core. For example,
call-with-output-file used to accept optional arguments
to select text versus binary mode and to indicate handling for a file
that exists already. Since the arguments were optional, they were
placed at the end of the argument list, which is after the callback
procedure that is often a lambda expression:
(call-with-output-file
dest
(lambda (out)
....) ; many lines

’truncate
’text)

The distance between the file name and the mode flags made the
code difficult to read and write, and the specification of the extra
arguments was awkward to document (i.e., up to two extra argu-
ments that are distinct symbols from certain sets). Using keyword
arguments, we write the above expression as
(call-with-output-file
dest #:exists ’truncate #:mode ’text
(lambda (out)
....))

In this form, the callback procedure regains its place at the end,
where it belongs. The file name is still the first argument, where it
belongs. The extra optional arguments are more clearly tagged via
keywords, and they can be placed in the middle of the by-position
arguments, which is where they work best. The specification of the
optional arguments (i.e., keyword-tagged with simple defaults) is
straightforward and easy to document.

Before deploying our current design for keyword argument, we
anticipated problems with the pattern (lambda args ...) to
accept arbitrary arguments or (lambda args (apply ...
args)) to propagate all arguments. Those patterns work only
for by-position arguments; generalizing any use of those pat-
terns requires a switch to make-keyword-procedure and
keyword-apply, which is more verbose and more difficult to
remember. For example, the traced example of an applicable
structure in Section 4 does not support tracing of keyword argu-
ments, and it should be generalized as follows:
(define-struct traced (f)
#:property prop:procedure
(make-keyword-procedure
(lambda (kws vals t . args)
(let ([f (traced-f t)])
(printf "∼s\n" (list* f kws vals args))
(keyword-apply f kws vals args)))))

Scheme and Functional Programming, 2009 99

For similar reasons, some PLT Scheme library procedures have
not automatically worked with keywords on a first iteration, such
as the const function to produce another function that accepts
any arguments and returns a constant. Such problems are easy to
fix, and occasional missing support for keywords has not been
a significant problem so far, but we expect to provide syntactic
support for the make-keyword-procedure and keyword-
apply pattern.

The initial implementation of our design for keywords did not
include the extra property for arity reporting that is described at
the end of Section 4. As a result, if the keyword-based call-
with-output-filewas applied to four by-position arguments,
the error message simply reported that the procedure expects one to
two arguments without mentioning that the procedure also accepts
optional #:exists and #:mode arguments. Indeed, such an
error message often appeared as a result of a call to call-with-
output-file using old-style optional symbols instead of the
new keyword arguments. PLT Scheme users immediately requested
improvement in the error message, which reflects the demand for
clear error reporting that our design was created to satisfy.

7. Related Work
We know of three major designs for keywords in Lisp and Scheme:
keywords in Common Lisp (Steele 1990), keywords in DSSSL (ISO
1996), and SRFI-89 (Feeley 2007). At least one other design has
been implemented through portable Scheme macros. Ada, Python,
and OCaml, support keyword arguments, while keyword arguments
in Smalltalk are fundamentally different. We take each of these in
turn in the following sections, and we end with a brief discussion
of the syntax of keywords in Scheme.

7.1 Common Lisp
In Common Lisp, keywords are the same datatype as symbols,
but they are written with a : prefix and they are self-quoting as
an expression. (This is actually a trick related to packages; see
Section 7.7.)

A Lisp procedure definition can include the special identifiers
&optional or &key before a set of arguments to declare them
as optional or by-keyword. In the latter case, the local name of the
argument effectively doubles as the keyword. Keyword arguments
are always optional, and the default value for optional and keyword
arguments is nil if none is declared. An &allow-other-keys
declaration suppresses rejection of keywords for actual arguments
that have no corresponding &key formal argument. A “rest” ar-
gument can be specified with the &rest declaration, which must
appear before any &key declarations. (The full syntax is somewhat
more complex, but those are the main points.)

For example, a rectangle procedure that accepts a width,
an optional height that default to the width, and and an optional
keyword-tagged color argument that defaults to "pink" is written
and called as
(defproc (rectangle width

&optional (height width)
&key (color "pink"))

....)

(rectangle 10 20 :color "blue")

The semantics of &optional and &key declarations is essen-
tially to extend the number of arguments accepted by the procedure,
and then post-process the list of extra by-position arguments to
match them with optional and keyword arguments. When the func-
tion consumes keyword arguments, the total number of arguments
after the by-position arguments must be even, and the keywords
that tag arguments are interleaved with the argument values–i.e.,

the argument list is used as a plist. When both &key and &rest
are used, arguments that are candidates for keyword arguments (in-
cluding the keywords themselves) are collected into a &rest ar-
gument, and the number of arguments must be even.

With keywords as part of the standard, many standard proce-
dures in Common Lisp can exploit keyword arguments. For ex-
ample, the member function accepts a comparison procedure as a
test: argument, in contrast to Scheme’s proliferation of separate
member, memv, memq, and memp procedures.

An advantage of implementing keyword-argument passing
as normal arguments, as in Common Lisp, is that procedures
like apply work with keywords automatically, and the &rest-
argument convention accommodates arbitrary keywords (at least
when &allow-other-keys is declared). Separate keyword-
apply and make-keyword-procedure procedures are un-
necessary.

Compared to our design, however, the Common Lisp design
suffers several drawbacks:

• Since optional- and keyword-argument values are drawn from
the same set of actual arguments, and since the keywords
that are meant as tags are passed the same as ordinary argu-
ments, keywords can be accidentally consumed as optional ar-
guments. As noted by Seibel (2005), “Combining &optional
and &key parameters yields surprising enough results that you
should probably avoid it altogether.”
• Although folding keyword arguments into a &rest arguments

makes sense in combination with &allow-other-keys,
it means that a procedure cannot generally accept both by-
position rest arguments and keyword arguments. Instead, using
keywords forces the rest argument to be a plist.
• Keyword arguments must be placed last in a procedure applica-

tion. That is, keywords can be in any order relative to each other,
but they must appear after all required and optional by-position
arguments.

The first two drawbacks, in particular, inhibit the use of keywords
to extend existing procedures that already use optional or rest argu-
ments. Our design accommodates such extensions, while produc-
ing more consistent error messages and being simpler to explain
overall.

Dylan (Shalit 1996) supports keyword arguments in much the
same way as Common Lisp, except that only keyword arguments
can be optional. Furthermore, Dylan distinguishes keyword tags
in applications from argument expressions, so that a keyword in-
tended as a tag is never accepted as an argument value. Dylan thus
achieves many of the goals in our design of providing a better sep-
aration between keyword and by-position arguments, but it does so
by restricting the Common Lisp model. A remaining drawback is
that keyword arguments cannot be mixed with by-position argu-
ments.

7.2 DSSSL
DSSSL includes an expression language that is based on Scheme,
but it includes keyword arguments similar to those of Common
Lisp. Keywords in DSSSL are a separate datatype from symbols;
they are written like symbols, but with a trailing :. Instead of
identifiers like &key that are treated specially in argument lists,
DSSSL uses the special constants #!key, #!optional, and
#!rest (and it omits the other declarations of Common Lisp).
The semantics of procedure calls and argument processing are as
in Common Lisp.

The rectangle example in DSSSL syntax looks like the
Common Lisp version, but with & changed to #! and a colon in
the application moved to the end of the keyword:

100 Scheme and Functional Programming, 2009

(define (rectangle width
#!optional (height width)
#!key (color "pink"))

....)

(rectangle 10 20 color: "blue")

DSSSL-style keyword and optional arguments is implemented
by several Scheme implementations, including Bigloo (Serrano
2009), Chicken (Winkelmann et al. 2009), and Gambit (Feeley
2009), though details vary slightly. For example, #!key is a sym-
bol in Chicken. Compared to our design, keyword and optional ar-
guments in DSSSL have the same advantages and drawbacks as in
Common Lisp.

7.3 SRFI-89
Like DSSSL, SRFI-89 distinguishes keyword values from symbols,
uses a trailing : for the syntax of keywords, and keywords are
self-quoting. Unlike DSSSL, SRFI-89 regularizes the syntax of
procedures with keyword and optional arguments by making the
procedure syntax more closely match the application syntax.

A keyword is associated with an argument in a procedure ex-
pression by placing the keyword before the formal argument; a
small difference to our syntax is that the keyword and argument
identifier are grouped by parentheses. An optional argument is de-
clared by placing a default-value expression after the formal ar-
gument, and then grouping the two with parentheses. A keyword
argument can be required, or it can be made optional by adding a
default-value expression after identifier, within the parentheses that
group it with the keyword.

The rectangle example could be written with SRFI-89 as
follows:
(define (rectangle width

(height width)
(color: color "pink"))

....)

(rectangle 10 20 color: "blue")

Our design mostly imitates the SRFI-89 syntax, because we
value the syntactic similarly of declarations and applications. We
depart from SRFI-89 syntax in not grouping a keyword with a
formal argument in a procedure declaration, because that change
further strengthens the similarity to applications (where a keyword
and its argument expression are not grouped with parentheses).

SRFI-89 separates a rest argument from keyword arguments; an
argument is consumed either as a keyword argument or collected
into the rest argument, but never both. SRFI-89 also generalizes
keyword support by allowing keyword arguments to appear before
by-position arguments. Unlike our design, however, keywords are
either grouped together before by-position arguments or together
after by-position arguments, and the order for a given procedure is
determined by the procedure declaration. A drawback of this ap-
proach is that callers of a procedure must remember which order is
used for a given procedure. Our design more completely separates
by-position and by-keyword arguments, so that keyword arguments
can always appear in any order relative to by-position arguments.

As in Common Lisp and DSSSL, optional- and keyword- argu-
ment handling is defined in terms of post-processing a sequence of
by-position arguments, where keyword tags are mingled with ar-
gument values. As a result, it suffers from the many of the same
problems in terms of accidental treatment of a keyword tag as a
direct argument.

7.4 Implementation via Macros
Scheme macros support a portable implementation of optional and
keyword arguments, although no such implementation has become

widely used. One recent effort is Eddington’s implementation for
R6RS, which we used for performance measurements in Section 5.
A lack of documentation for the library makes a detailed compar-
ison difficult, but as we noted in Section 5, the library supplies a
define/kw form for binding names that resolve keyword argu-
ments statically. Having no syntactic distinction between keywords
as expressions and keywords as argument tags, however, makes the
library’s static resolution inconsistent with its dynamic resolution.4

A variant of our design appears to be possible as a portable im-
plementation using macros. Keywords could be identified through
a keyword form that signals a syntax error when used as an ex-
pression, while an explicit with-keyword form would serve the
role of a keyword-allowing application form that detects keyword
tags. The combination of keyword and with-keyword enables
the distinction between keyword tags and argument expressions,
though it is syntactically more verbose than a built-in syntax of key-
words or allowing #%app to be refined. To allow a procedure with
optional keywords to be called through a normal application form,
keyword-accepting procedures would be represented as plain pro-
cedures (since Scheme standards do not include applicable struc-
ture types); the protocol for supplying keyword arguments could
use a special value as a regular argument to indicate that certain
other arguments provide lists of keywords and associated values.

7.5 Ada, Python, and OCaml
Every function in Ada or Python supports keyword arguments,
where the name of each formal argument doubles as the keyword
for the argument. In a function call, by-position arguments are
provided first and matched to formal arguments in order, and then
keyword arguments can appear (in any order) to supply values for
the remaining arguments. As in our design, keyword arguments
are syntactically distinguished from by-position arguments in a
function call. Unlike our design, by-position arguments must be
supplied first.

Ada’s double role for every formal argument as both a by-
position and by-keyword argument is different from Lisp and
Scheme systems, where formal argument names are purely local.
Exposing all argument names as keywords in Scheme conflicts with
other important aspects of the language, such as alpha renaming.
A workable syntax might have the programmer annotate identifiers
that should double as by-position and by-keyword arguments.

OCaml supports labels on function arguments that are similar
to Ada’s keyword arguments. A programmer explicitly designates
labeled formal arguments using∼ on the argument (and, optionally,
a label that is separate from the argument’s local identifier). The
label of an argument becomes part of the function’s type, which
means that the compiler can always statically adjust the order of
labeled arguments in a function call—even changing the order
of curried applications to match the declaration order. Labelled
arguments also can be optional (which, again, is exposed in the
type of the function).

Finally, the PLT Scheme class system behaves much like Ada, in
that class initialization arguments (i.e., constructor arguments) are
usually supplied by name, but they can also be supplied by position.
If arguments are supplied by position, the order of the names in the
class declaration is used to match them with arguments values. This
design pre-dates general keyword support in PLT Scheme, and it
mainly provided backward compatibility with a previous iteration
of the class system that supported only by-position initialization
arguments.

Allowing keyword arguments to be supplied by position, as
in Ada, conflicts somewhat with allowing keyword arguments in

4 http://groups.google.com/group/ikarus-users/
browse_thread/thread/fb3a813c198311ff

Scheme and Functional Programming, 2009 101

any order relative to by-position arguments; perhaps sensible rules
could be specified to govern a mixed order of arguments with and
without keywords. Ada-style argument handling also conflicts with
combining keyword arguments and a by-position rest argument.
More generally, we have not found much need for passing keyword
arguments by position.

7.6 Smalltalk
In Smalltalk, most methods arguments are tagged with names, but
the tags are not keywords in the sense of this paper. The tag on a
Smalltalk method argument is simply part of the method name that
is interleaved with the arguments; the tags and arguments cannot be
reordered, and individual arguments are not optional.

7.7 Keyword Lexical Syntax
A keyword in Common Lisp is prefixed with :. This choice of syn-
tax is related to Common Lisp’s notion of package-specific sym-
bols, where the empty package name corresponds to the “keyword”
package. Conceptually, keywords are self-quoting because all sym-
bols in the keyword package are bound to themselves.

In DSSSL and many Scheme systems, a keyword is suffixed
with :, instead of prefixed with :. To many programmers, the suffix
better connects the keyword with its argument, while others argue
that a prefix is more appropriate for a prefix-oriented language like
Scheme.

PLT Scheme uses a #: prefix. Chicken also supports a #: pre-
fix in addition to a : suffix, though the keyword in both cases is
equivalent to a symbol. The #: choice is natural for Scheme, since
a # is normally used to extend the reader syntax, and : is normally
allowed in symbols (i.e., some symbols and identifiers in existing
code might break if a : prefix or suffix becomes the syntax of key-
words). Many argue, however, that #: looks too heavy, while the
whole point of keywords is arguably to add a lightweight grouping
syntax to the language (i.e., lighter weight than parentheses). Also,
Common Lisp uses the prefix #: for uninterned symbols.

We can offer no rationale that will resolve the debate. We chose
#: because it broke no existing code and because at least one
author likes how it stands out. An informal poll among PLT Scheme
users suggested roughly equal support for all three choices (prefix
#:, prefix :, and suffix :) with a slightly higher preference for
#:—possibly reflecting the syntax that is already in place. In any
case, PLT Scheme’s #lang notation would allow future modules
to be written using a different syntax without affecting old modules.

8. Conclusion
Scheme’s “rest” arguments and case-lambda allow flexible
handling of procedure arguments, and they easily accommodate
keyword-like patterns using symbols and lists. When a pattern is
used widely enough, however, converting the pattern to a language
construct offers many advantages: better readability, clearer docu-
mentation, better error messages, easier composition of libraries,
and a central point of control for implementation details of the pat-
tern. For all of these reasons, we believe that specific constructs
for keyword and optional arguments are appropriate for dialects of
Scheme.

The essential elements of our design are (1) keywords that are
distinct from symbols, as in many Scheme systems, (2) a form for
creating keyword-based procedures that matches the application
syntax, similar to SRFI-89, (3) disallowing unquoted keywords as
literal expressions, which is novel in our design, and (4) passing
keyword arguments to a procedure in a way that reliably separates
them from by-position arguments, which is also novel.

Bibliography
John Clements and Matthias Felleisen. A Tail-Recursive Machine with

Stack Inspection. ACM Trans. Pogramming Languages and Systems
26(6), pp. 1029–1052, 2004.

William D. Clinger et al. Larceny. 2009. http://www.ccs.neu.edu/
home/will/Larceny/

Marc Feeley. SRFI-89: Optional Positional and Named Parameters. 2007.
Marc Feeley. Gambit v4.4.3. 2009. http://www.iro.umontreal.

ca/˜gambit/

Robert Bruce Findler and Matthew Flatt. Slideshow: Functional Presenta-
tions. In Proc. ACM Intl. Conf. Functional Programming, pp. 224–235,
2004.

Franz, Inc. Allegro CL. 2009. http://www.franz.com/
Abdulaziz Ghuloum. Ikarus Scheme v3.0+. 2009. http:

//ikarus-scheme.org/

ISO. Document Style Semantics and Specification Language (DSSSL).
ISO/IEC 10179:1996, 1996.

SBCL. 2009. http://sbcl.sourceforge.net/
Peter Seibel. Practical Common Lisp. Apress, 2005.
Manuel Serrano. Bigloo v3.2b-2. 2009. http://www-sop.inria.

fr/mimosa/fp/Bigloo/

Andrew Shalit. The Dylan Reference Manual. Addison-Wesley, 1996.

Michael Sperber (Ed.). The Revised 6 Report on the Algorithmic Language
Scheme. 2007.

Guy L. Steele Jr. Common Lisp: The Language. Second edition. Digital
Press, 1990.

Felix Winkelmann, Kon Lovett, and Leonard Frank (elf). Chicken v4.0.0.
2009. http://www.call-with-current-continuation.
org/

Appendix
Implementation of optional arguments in terms of case-lambda:
(define-syntax lambda
(syntax-rules ()
[(lambda (arg rest) . body)
(letrec ([f (case-lambda* f (arg ...) () ()

rest body)])
f)]))

(define-syntax case-lambda*
(syntax-rules ()
[(case-lambda* f () (id ...) (clause ...)

rest body)
(case-lambda clause ...

[(id rest) . body])]
[(case-lambda* f ([opt-id default-expr]

. rest-args)
(id ...) clauses rest body)

(case-lambda* f rest-args (id ... opt-id)
([(id ...)

(f id ... default-expr)]
. clauses)
rest body)]

[(case-lambda* f (req-id . rest-args)
(id ...) clauses rest body)

(case-lambda* f rest-args (id ... req-id)
clauses rest body)]))

102 Scheme and Functional Programming, 2009

Screen-Replay: A Session Recording and Analysis Tool for
DrScheme

M. Fatih Köksal, R. Emre Başar
Department of Computer Science

İstanbul Bilgi University
{fkoksal,reb}@cs.bilgi.edu.tr

Suzan Üsküdarlı
Department of Computer Engineering

Boğaziçi University
suzan.uskudarli@boun.edu.tr

Abstract
Approaches to teaching “Introduction to Programming” vary con-
siderably. However, two broad categories may be considered: prod-
uct oriented vs process oriented. Whereas, in the former the final
product is most significant, in the latter the process for achieving
the final product is also considered very important. Process oriented
programming courses strive to equip students with good program-
ming habits. In such courses, assessment is challenging, since it
requires the observation of how students develop their programs.
Conventional methods and tools that assess final products are not
adequate for such observation.

This paper introduces a tool for non-intrusive observation of
program development process. This tool is designed to support the
process oriented approach of “How to Design Programs” (HtDP)
and is implemented for the DrScheme environment. The design,
implementation and utility of this tool is described with examples.

Keywords Introductory Programming, Development Process, De-
sign Recipe, DrScheme

1. Introduction
The education of a computer science student usually starts with
an introductory programming course. The aim of such courses is
to equip students with general programming knowledge and pre-
pare them for subsequent courses in the curriculum. Such courses
typically teach the fundamental concepts of programming with the
use of given programming language, integrated development en-
vironment (IDE), and other tools [2]. With these tools and course
instruction students are expected to learn how to write, debug and
document programs.

While the objectives of introductory programming courses are
similar, the content, approach and assessment methods differ.
Teaching with examples is frequently used [6], where examples
are provided for every concept introduced. These examples are ex-
pected to guide students in their assignments. Students often use
these examples as a starting point and modify them until they reach
the desired solution. Conventional assessment methods evaluate
exams and assignments by comparing students code against ex-
pected result. The students code in this case is the final product.

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

There is no further information on how the student arrived at the
final product.

The TeachScheme! project [7] does not appreciate the program-
ming-by-tinkering methodology. It developed an alternative ap-
proach to teaching, described in the text book, “How to Design
Programs” (HtDP) [5]. This approach focuses on a design process
that starts from problem statement to a well-organized solution. Af-
ter the publication of HtDP, several universities around the world
revised their curriculum in favor of this approach. Most universi-
ties use the methodology as described in the book, where others [2]
have derived versions [10] according to their needs.

The HtDP and approaches derived from it emphasize the im-
portance of process in comparison to the product. Accordingly, in-
stead of conventional assessment methods, they prefer lab (or live)
exams, which they consider to be a more accurate reflection of stu-
dents progress [4]. Approaches to conduct live exams also vary.
Some let students develop programs independently and evaluate
results in a conventional manner. In others [2, 1] the development
process is observed personally. The observation process is an intru-
sive approach that may impact student performance.

In order to understand how students develop their programs it
is necessary to track their development process. By tracking their
process, we aim to answer following questions: Do students follow
the suggested design guidelines while they develop programs on
their own? Are students, who follow the suggested guidelines,
more successful than the others? If not, is there any specific design
pattern that is commonly used by successful students? Using an
intrusive tracking method may impact students’ performance in
the programming session. Indeed, it has been reported that some
students were disturbed by personal observation of their work [1].

An alternative approach for tracking program development is
to embed the tracking ability into the development tool. Such a
tool would need to record as well as replay the development pro-
cess. This work describes a program development tracking tool for
DrScheme [8] that enables a student to record his/her programming
session. This recorded session can, then, be replayed and analyzed
by an observer.

The rest of this paper is organized as follows: Section 2 fur-
ther discusses our motivation to analyze students’ programming
sessions in order to answer questions we stated above. Section 3
investigates related work regarding product and process oriented
approaches and their assessment techniques. Underlying concepts
and implementation details are given in Section 4, followed by a
discussion in Section 5. Finally, in Sections 6 and 7, we discuss
future work to be done and conclude our work.

103

2. Motivation
The first year curriculum for Computer Science Department at
İstanbul Bilgi University was revised effective of 2007-2008 aca-
demic year. Courses were divided into sections of at most 20 stu-
dents, in order to have better control over the course and increase
student-instructor interaction. With this change, we have been able
to intensively follow our students to see if they meet our educa-
tional approaches.

The introductory programming course (Comp149/150-HtDP) at
İstanbul Bilgi University, is a part of the meta-course Comp149/150,
which also includes the courses: Academic Skills (Comp149/150-
AS), Meta Skills (Comp149/150-MS) and Discrete Mathematics
(Comp149/150-DM). This meta-course is mandatory to Computer
Science, Financial Mathematics and Business Informatics ma-
jors. Comp149/150-HtDP uses “How to Design Programs” (HtDP)
[5] as the text book, Scheme as the programming language and
DrScheme [8] as the development environment.

The first semester of the course (Comp149-HtDP) covers first
four parts of the book, which basically includes primitive, com-
pound and recursive data types, conditionals, and abstraction. Gen-
erative recursion, graphs, vectors and iterative programming are
taught in the second semester (Comp150-HtDP).

Each semester consists of 13 weeks. Every week there are
two hours of lectures and two hours of labs. In lecture hours,
instructors present the material and write programs in front of the
students by following the design recipe as suggested by HtDP.
Additionally, each week students are assigned a project, which they
must complete within one week. In the final weeks of the second
semester assignments become more complicated and students are
given at least two weeks to complete. During lab sessions students
present their project solutions to their classmates.

During this course students are given four live exams. Each
exam consists of one or two questions that have to be solved in ap-
proximately 1.5 hours. Exams are completed on computers, where
students only have access to the text book and DrScheme. All net-
working is disabled during the exams. Grades of weekly projects
and live exams determine the course grade of students. Final grade
of a student from this course is combined with grades from other
parts of the meta-course using a formula that rewards even per-
formance. This grading policy was established based on the belief
that students must have sufficient knowledge of mathematics, criti-
cal reading/thinking skills and the ability to express their thoughts
properly in order to develop well structured programs. Starting
from the 2008-2009 academic year, students are examined by a jury
at the end of the year by their instructors of this meta-course.

The main objective of the entire course is to teach “How to
solve it?” [11] and the process is central to this idea. The following
section describes the design recipe methodology of HtDP that, in
theory, meets the aim of our introductory programming course.

2.1 HtDP and the Design Recipe
HtDP is defined by its authors as “... the first book on programming
as the core subject of a liberal arts education”. It focuses on the de-
sign process that leads from problem statements to well-organized
solutions rather than studying the details of a specific programming
language, algorithmic minutiae, and specific application domains
[5]. It includes design guidelines, which are formulated as a number
of program design recipes leading students from a problem state-
ment to a computational solution in step-by-step fashion with well-
defined intermediate products.

A design recipe is a checklist that helps students to organize
their thoughts through the problem solving process. Basic steps of
the design recipe are as follows;

0. Data definition: describe the class of problem data
1. Contract: name your function and give input-output relation in

terms of data type used
2. Purpose: informally specify the behavior of your program
3. Examples: illustrate the behavior with examples
4. Template: develop your programs template/layout
5. Code: transform your template into a complete definition
6. Tests: turn your examples into formal test cases.

The version of the design recipe presented here includes 7 steps
where the original one has 6. In our version, purpose statement and
the contract are split into different steps. It starts from 0, since a data
definition can be used by a number of different functions, while
other steps are function specific.

Students are expected to use this checklist on a question-and-
answer basis to progress towards a solution [5]. Figure 1 shows the
application of a design recipe for summing the elements of a list.

2.2 The Strategic War Between Instructors and Students
There are numerous reports of success using HtDP curriculum [12,
2, 13, 3]. Since the adoption of HtDP, we have also observed similar
improvements. Specifically, we have observed improvements in
student performance with respect to:

• programming abilities,
• overall grades and
• subsequent courses.

These improvements are particularly noticeable in female stu-
dents.

On the other hand, increased interaction with students revealed
some deficiencies in their adoption of the process we use. Students
were not applying the design recipe throughout their development
process. They were diving into the code without going through
the design steps. To tackle this problem, a change in our grading
scheme was required. The grading scheme was changed to grade
every step of the design recipe separately.

Students responded by faking the process. They were writing
the code first and adding the design steps later. This response led
us to inspect each student submission more carefully. The forged
design steps can be distinguished by checking the inconsistencies
between the steps. Considering that, our response was to do a con-
sistency check between the design steps and stopping evaluation of
the assignment when an inconsistency was found.

At that point, it was understood that applying more force on
following the recipe only created better “design recipe evasion”
tactics. With this realization we abandoned the attempt to evaluate
the order of construction and only verified presence of correct
parts. Currently, the recipe is followed while teaching, and students
are encouraged to use for every program they develop. But, the
application of the recipe is not enforced or evaluated in any way.

However, we are still interested in tracking our students’ devel-
opment processes to see both how they develop their programs and
whether the suggested approach helps them to build well-structured
solutions. Therefore we developed a tool for just that purpose.

3. Related Work
To the best of our knowledge, there is no software that deals
with the analysis of code/editing sequences in the way Screen-
Replay does. This section rather reports approaches that aim to in-
crease both product and process quality of students in programming
classes.

In [14], authors report on a controlled experiment to evalu-
ate whether students using continuous testing are more success-

104 Scheme and Functional Programming, 2009

; ; Data d e f i n i t i o n :
; ; a l i s t o f numbers (l o n) i s e i t h e r ;
; ; 1 . empty , or
; ; 2 . a p a i r o f
; ; a) a number and
; ; b) a l i s t o f numbers (l o n)

; ; C o n t r a c t :
; ; sum−lon : l o n −> number

; ; Purpose :
; ; t h i s f u n c t i o n consumes a l i s t o f numbers
; ; and p r o d u c e s t h e sum o f t h e e l e m e n t s o f
; ; t h e g i v e n l i s t

; ; Examples :
; ; empty −> 0
; ; (l i s t 5) −> 5
; ; (l i s t 3 1) −> 4
; ; (l i s t 4 7 −2) −> 9

; ; Templa te :
; ; (d e f i n e (sum−lon a lon)
; ; (cond
; ; ((empty ? a l on) . . .)
; ; (e l s e
; ; . . . (f i r s t a lon)
; ; . . . (sum−lon (r e s t a lon)) . . .)))

; ; Code :
(d e f i n e (sum−lon a l o n)

(cond
((empty ? a l o n) 0)
(e l s e

(+ (f i r s t a l o n) (sum−lon (r e s t a l o n))))))

; ; T e s t s :
(check−expect (sum−lon empty) 0)
(check−expect (sum−lon (l i s t 5)) 5)
(check−expect (sum−lon (l i s t 3 1)) 4)
(check−expect (sum−lon (l i s t 4 7 −2)) 9)

Figure 1. Application of the design recipe for summing the elements of a list

ful in completing programming assignments. As the source code
is edited, continuous testing uses excess cycles on a developer’s
workstation to continuously run regression tests in the background
against the current version of the code providing feedback about
test failures. Their tool aim to give extra feedback during the pro-
gramming session and improve the productivity of developers. The
experimental results indicate that students using continuous testing
more likely to complete the assignment by the deadline. It appears
that their efforts are on final product quality rather than the pro-
gramming process.

In their case study [2], instructors from Tübingen and Freiburg
Universities report the development of their introductory program-
ming course. For their first-year programming course they adopted
the tools developed by the TeachScheme! project, in addition, they
supervise their students closely with assisted programming sessions
on weekly basis. During assisted programming sessions students
solve a set of exercises under the supervision of a doctoral student
assisted by one or two teaching assistants to ensure that the stu-
dents follow the design recipes. Authors report that their students
not only performed well on exams, they were also able to trans-
fer their knowledge to other programming languages and IDEs. In
our experiences, on the other hand, we observed that some students
perform poorly (some even could not do anything) when they are
watched “over their shoulders” during programming sessions. Such
students perform well when they study in environments where they
feel comfortable. As authors state, nearly 15% of the students did
not even try to solve the programming assignments during assisted
programming sessions. We can not say that this is caused by the
same reason, but, further analysis can be done, and the sessions of
such students can be observed later using tool support.

This study also points out that, many students avoided asking
TAs for help during the session, as they either expected that TAs
were not allowed to provide concrete help or they even believed
that asking for help was a form of cheating. As reported, the
perception of assisted programming changed during the semester
as TAs not only provided help upon request but also helped pro-
actively as they noticed students having problems. This approach
is helpful for students, who hesitate asking questions. The point
is, how do we find out that a student is experiencing a problem
applying the design recipe without constantly watching his/her
session? As we have already experienced, students’ main concern

is to have the final running code before the time finishes. Thus, they
escape from applying the design recipe and focus back to the code
using the programming-by-tinkering method, as soon as they stay
uncontrolled. Furthermore, assisting students during programming
sessions does not mean that they apply design recipe in exams. One
may not attribute the success of students to the success of design
recipe, without tracking their process during exams.

Another study [9] points out the importance of exposing the pro-
cess of development of the solution rather than just presenting the
final state of the program. They propose “live coding” as an active
learning process. Since instructors do not commit same errors stu-
dents generally do, they suggest the student-led live coding (where
the student writes the code in front of his/her classmates) rather
than the instructor-led live coding (in which the instructor writes
the code in front of students). Our experiences show that, especially
in the first few weeks, students should program by themselves and
learn from their mistakes. Interfering as they make mistakes means
taking their chance of solving the problem by themselves, therefore
learning the importance of design recipe.

Exposing a student’s errors in front of his/her classmates might
also damage the motivation of other students and lead them to hold
back and not participate. Instead, project submissions of students
can be replayed without showing the identity of the submission
owner to illustrate good and bad programming habits.

For using in online courses or when the class time is limited,
authors of this paper also implemented a screen casting software
which allows to record narrated video screen captures and then
made available to students to review. Keeping track of students’
programming sessions and analyzing them can hardly be done
using remote desktop or screen-cast applications. Content based
information can not be extracted from sessions recorded by such
applications. Moreover, these applications are not adequate for
resource limited environments.

Finally in [1], instructors teach the programming process using
a five steps, test driven, incremental process (STREAM). Every
week there is a mandatory assignment. For lab examinations, they
propose a method where students are instructed to call upon a
TA when they reach a checkpoint to show and demonstrate their
solutions. Students approach to the development process as well as
their solutions count in the final grade. To evaluate whether students
really apply the suggested approach when no guidance is provided,

Scheme and Functional Programming, 2009 105

Figure 2. An overview of the Screen-Replay tool

they conduct an experiment. In this experiment students solve the
assignments while TAs observe and make note of any violations
to the method taught. Authors report that all students followed the
process they have been taught. It is unclear whether students were
aware of the aim of this experiment. If they were, it is quite possible
that it would inpact their programming behaviour.

In summary, none of these methods provide a way for tracking
students process while they work on their own. Thus, we see strong
viability in favor of our tool in this context.

4. Tracking the Development Process
In order to track how students construct programs we developed
a system called Screen-Replay. This system records how students
develop their programs and allow evaluators to observe as well
as identify the sequence of activities taken during the program
construction.

4.1 Requirements
The fundamental requirements of the system are:

1. Record every state the program takes during its construction
lifetime. The lifetime begins with the creation of the program
session until its completion.

2. Replay the construction of the program.
3. Describe the high level programming activities taken during the

program constrution. These activities are the ones described by
the HtDP methodology.

The requirement 1 must be satisfied within the development en-
vironment in a transparent manner. In another words, construction
activities must be recorded in the background while the student is
constructing their solution. Requirements 2&3 are meant for evalu-
ators who will inspect and annotate the students program construc-
tion.

4.2 Implementation
Screen-Replay mainly consists of two parts: Recorder and Tagger.
It implements the requirements within the DrScheme environment.
Scheme programming language is used for the implementation.
The Recorder and Tagger are decribed in the following sections.

4.2.1 Recorder
The Recorder records all user interactions within the DrScheme’s
Definitions window, which is where programs are defined. The
Recorder saves information about any insertion or deletion. The
following Scheme structure, action, describes the information
stored for every user interaction.

; ; a c t i o n
; ; t i m e s t a m p (number) : c u r r e n t t i m e i n s e c o n d s
; ; o p e r a t i o n (symbol) : t y p e o f t h e o p e r a t i o n .
; ; Can be ’ i n s e r t or ’ on−de le t e
; ; s t a r t (number) : p o s i t i o n o f t h e c u r s o r i n
; ; t h e d e f i n i t i o n s window a t
; ; t h e t i m e o f o p e r a t i o n
; ; l e n (number) : l e n g t h o f t h e a c t i o n− c o n t e n t
; ; c o n t e n t (s t r i n g) : t h e c o n t e n t o f t h e a c t i o n

(d e f i n e− s t r u c t a c t i o n (t imes t amp
o p e r a t i o n
s t a r t
l e n
c o n t e n t) # : p r e f a b)

The following example is an action that indicates that user typed
f, an insertion of length 1, at position 0 of the definitions window.
Position 0 is the starting position.

; ; For Example
(make−act ion 1240394142 ’ i n s e r t 0 1 ” f ”)

For every text insertion and deletion the Recorder creates a
corresponding action. Actions remain in the buffer until the file
is saved. The Recorder catches keystrokes by extending defi-
nitions-text with a mixin. This mixin augments the insert
and on-delete methods with use of a boolean flag to indicate
the recording state of the current window. This approach makes
it possible to record actions in each window separately.

When a file is saved the buffer content is written to an actions-
file with a “.rec” extension. An actions-file consists of a series of
action structures serialized with the write function. The name of
the actions-file is formed using the base file name of the program
file. Subsequent actions are appended to the actions-file when the
file is re-saved. In the case of a save-as operation previous actions
are copied from the current actions-file to the new actions-file.
Recorded files are replayed using the Tagger.

4.2.2 Tagger
The Tagger has two main functions: (1) To replay the program
construction and (2) describe the high-level construction process
in terms of the HtDP methodology.

The Tagger allows the observer to see exactly how the program
was constructed. While observing the construction process, the ob-
server can describe the programming activity using tags defined for
this purpose.

Replaying: The Tagger replays the exact steps taken while the
program was written. The observer can see each text insertion or
deletion at the same speed of the construction process. Various
controls enable more convenient navigation of the construction
process:

• Play: Start playing actions
• Pause: Pause playing
• Backwards: Play backwards
• Speed-Up/Down: Change the play speed
• Go-To-Next-Action: Jump to next action without waiting

A time slider is supplied to enable the observer to directly
navigate to a desired action.

A student may jump from one position to another during the
programming session. For example, he/she can move to the data
definition from the program code. Such jumps can make it difficult
for the observer to follow the session. Additional features exist to
assist the observer in such cases. For example, the Tagger automat-
ically scrolls to the position within the program that is associated

106 Scheme and Functional Programming, 2009

Figure 3. An overview of the Tagger tool

with the current action. This makes the location visible making it
easier to follow the flow of construction. The currect action record
is shown with a yellow highlight.

When a file is selected to be played, all actions in the actions-file
are loaded into a Tape structure defined as follows:

; ; t a p e
; ; a c t i o n s (v e c t o r) : c o n t a i n s t h e a c t i o n s saved
; ; by t h e Recorder
; ; p o i n t e r (number) : i n d e x o f t h e c u r r e n t a c t i o n

(d e f i n e− s t r u c t t a p e (a c t i o n s p o i n t e r) # : mu tab le)

When the Play button is clicked, a thread starts to play the
actions in the Tape structure. To play an action is to insert/delete the
content to/from the editor according to the timestamp and position
information in it. For example, to play

(make−act ion 1240394142 ’ i n s e r t 0 1 ” f ”)

will insert the single character “f” in the editors first position. When
playing backwards, the action operation is reversed: an ’insert
symbol is interpreted as on-delete and an ’on-delete symbol is
interpreted as insert.

The Tagger replays the construction at the same speed of the
original construction. Scheme semaphores are used in order to
make the Tagger wait while playing. The running thread is sus-
pended until the semaphore becomes free. This semaphore is man-
aged by a timer object, which is set to the difference between con-
secutive actions.

Consider the recorded example shown in Figure 1. The final
product shows that all design recipe steps are present. The Tagger
enables one to view the process that led to this product. The first
column of Figure 4 describes the students process. Replaying this
session reveals that the student actually did not follow the design
recipe sequence. It appears that the student attempted to fool the
instructor. The student first implemented the code and then added
the remaining required steps. The tracking process reveals the order
of the application of design recipe. It also shows how much time is

spent on each step. The ability to observe such a process enables
the instructor to discover deficiencies and provide more accurate
help.

Tagging: Tagging allows the evaluator to describe that kinds of
activities performed during the constructing of a program. Recall
that the activities of interest in HtDP are:

0. Data definition
1. Contract
2. Purpose
3. Examples
4. Template
5. Code
6. Tests

To identify each of these activities the corresponding tags DD,
CT, PP, EX, TL, CD and TS are defined. During the tagging process
the observer specifies a sequence of tags as he/she observes the
construction states. The interface includes buttons for each tag. The
observer clicks, for example, to the DD button, when the student
finishes editing the data definition and moves to another state.

It is possible that the student performs some activity that does
not fit within the HtDP methodology. For this, a Junk tag was de-
fined. Junk may not be the best label as the student may do some-
thing useful that is not directly meaningful to HtDP. For example,
students may write a question or make a check list to assist them-
selves. On the other hand they may write something totally irrele-
vant, such as a note to the examiner (i.e. “Dear Professor, for God’s
sake, I don’t want to fail.”). In any case, the Junk tag should sim-
ply be interpreted as anything that is besides the enumerated tags
defined earlier.

The ideal development sequence would be: [DD, CT, PP, EX,
TL, CD, TS]. Naturally, one does not expect a perfect program
construction. But, rather, hope to observe that the overall order of
steps was followed.

Scheme and Functional Programming, 2009 107

Tags are stored in Tag structure:

; ; t a g
; ; name (symbol) : name o f t h e t a g
; ; i d e n t i f i e r (symbol) : an i d e n t i f i e r t h a t
; ; t h e t a g i s t i e d t o
; ; end (number) : v a l u e o f t h e t a p e−p o i n t e r
; ; a t t h e t i m e o f t a g g i n g

(d e f i n e− s t r u c t t a g (name i d e n t i f i e r end) # : p r e f a b)

; ; For Example
(make−tag ’DD ’ l i s t−of−numbers 65)

The development process is denoted with a sequence of tags,
which are inserted by clicking on the appropriate tag-button. Fur-
thermore, an identifier can be associated with each tag to further
describe which function the activity is associated to. For practical
reasons, only the position of the tape-pointer at the end of the tag
is stored. This makes reorganization of tags easier. When a new tag
is generated, the Tagger saves this tag to its tags-list and displays it
in the panel on the right side of the window.

Recall the programming assignment in Figure 1, which we
assumed to be recorded using the Recorder. Second column of the
Figure 4 shows responses of the observer to the process of the
student. The observer carefully tracks actions of the student and
tags the session accordingly. At the end of the tagging process a
tag-list, possibly as in the example below, is generated. Tag-end
positions may not be easily traceable from the given figure, but
they need to be shown in this example.

(l i s t (make−tag ’CD ’ sum−lon 158)
(make−tag ’TS ’ sum−lon 297)
(make−tag ’CD ’ sum−lon 303)
(make−tag ’TL ’ sum−lon 382)
(make−tag ’EX ’ sum−lon 484)
(make−tag ’CT ’ sum−lon 564)
(make−tag ’PP ’ sum−lon 574)
(make−tag ’DD ’ l i s t−of−numbers 900)
(make−tag ’ JK ’ none))

Above tag-list, generated from the tagging session, tells us that
actions from indices 0 up to 158 are somehow related and have
the same context (they form the code for sum-lon function for
this particular example). Similarly, actions between 159-297, 298-
303 (and so on) have their own context according to the observer.
Therefore he/she generated new tags.

The application of design recipe was already revealed with re-
playing the session, but having the tag-list in hand means much
more than just replaying. First of all, once the tag-list is gener-
ated there is no need to replay the session to see the process. It
is sharable data, which can be sent to someone else for further ob-
servation. Tag-lists from different sessions of a student, or from
different students can be used together to be analyzed. Even if the
tagging process is not finished, tags generated so far can be saved
and later loaded (for the same session) for further tagging. The Tag-
ger also allows the observer to jump to a previously tagged position
using the tag-list.

Tag-list, by itself, includes some information about the session
and can be used for investigation of the construction process. How-
ever, using both recorded actions and the tag-list together, a lot
more information about the session can be extracted. The following
subsection introduces the idea of “processed-tag” which enables
more detailed investigation of a session.

4.3 Processing the Tags
While actions and tags are useful by themselves, merging these two
sources of data provides a better insight to the students process. A
tag, by itself, is actually a collection of actions. Therefore, it should

represent characteristics of actions it contains. Using the already
available time and position data in actions, tags can be extended
with more information to generate a self contained analysis data.
Processed-tag is defined as follows to meet this requirement;

; ; p roces sed− t ag
; ; s t e p (symbol) : t h e name o f t h e t a g
; ; i d e n t i f i e r (symbol) : an i d e n t i f i e r t e x t
; ; a c t i o n−c o u n t (number) : t o t a l number o f a c t i o n s
; ; c o n t a i n e d i n t h i s t a g
; ; s i z e (number) : t o t a l l e n g t h o f a c t i o n s
; ; c o n t a i n e d i n t h i s t a g
; ; s t a r t− t i m e (number) : t i m e o f t h e s t a r t i n g
; ; a c t i o n o f t h i s t a g
; ; end− t ime (number) : t i m e o f t h e l a s t
; ; a c t i o n o f t h i s t a g
; ; s t a r t− p o s i t i o n (number) : s t a r t i n g p o s i t i o n o f t h i s
; ; t a g i n t h e e d i t o r
; ; e n d−p o s i t i o n (number) : end p o s i t i o n o f t h i s t a g
; ; i n t h e e d i t o r

(d e f i n e− s t r u c t p r o c e s s e d− t a g (s t e p
i d e n t i f i e r
r eco rd−coun t
s i z e
s t a r t− t i m e
end− t ime
s t a r t− p o s i t i o n
e n d−p o s i t i o n) # : p r e f a b)

As described above, processed-tag includes much more infor-
mation about the actions associated a tag. Inspecting a processed-
tag provides a summary of its associated actions, i.e duration, begin
and end time, the segment in the code, etc.

It is possible to identify when the student switches between
design steps. Inspecting these switches might reveal a common
pattern in the application of the design recipe.

Another type of information that is possible to extract from
processed-tags are the timings. Using processed-tags, it is possible
to examine the time distribution among design steps.

It is possible to observe how the overall program progress as
well as individual segments. This information might provide insight
into students’ problem solving techniques.

Sessions can be divided into active or passive parts. Active parts
are parts where the user interacts with the editor. Passive parts are
the parts where the user does not interact with the editor and there
is no information about what he/she is doing. The analysis of re-
lations between these parts together with the segment switching
information can provide more accurate information about the stu-
dents’ behavior.

5. Discussion
We compared recorded sessions with source codes to verify that
recorded sessions would build the exact source code. All sessions
were successfully regenerated from the recorded files, with the
exception of regions that were commented out with boxes1, since
this feature has not yet been implemented.

An interesting side effect of the Screen-Replay tool is related
to plagiarism, which can be used during analysis. Detecting plagia-
rism was not a design decision for Screen-Replay, but an analysis
of the actions-file helps to detect plagiarism. For example, a student
may copy-paste someone else’s code. Since the Recorder generates
a new action for each keystroke, copy-paste operations end up with
actions that has a length greater than 1.

The fuzzy nature of the design recipe makes it hard to auto-
matically detect the design segments. Students apply it in different

1 DrScheme allows users to comment out regions with a box snip.

108 Scheme and Functional Programming, 2009

Student Observer
Starts implementing the code for the sum-lon function. Realizes that the student is implementing the code for the sum-

lon function. Types an identifier (may be “sum-lon” for this
case) or keeps it blank. Waits until the student switches to some
other design step.

Finishes implementing the code. Starts implementing the tests. Pushes CD button at the time student finishes the code imple-
mentation. Waits the student to finish the tests.

Finishes implementing the tests. Goes back to the code (he
might get some errors. Tagger doesn’t show it) and modifies
some parts.

Pushes TS button at the time student finishes tests. Waits the
student to finish code modification.

Finishes modifying the code. Starts writing template according
to the code, then writes the examples according to tests.

Pushes CD, then TL as the student finishes writing code and
template, respectively. Waits the student to finish examples.

Finishes writing examples. Writes contract and purpose for the
function. Starts writing data definition for list-of-numbers.

Pushes EX, CT and PP buttons as the student finishes writing
examples, contract and purpose, respectively. Realizes that the
student is writing data definition for the list-of-number. Updates
the identifier. Waits the student to finish the data definition.

Finishes writing data definition. Pushes DD button as the student finishes writing the data defi-
nition.

Writes his/her name and id number. Pushes JK button (as this is an irrelevant information for the
analysis) as the student finishes writing identification informa-
tion.

Figure 4. Students actions and observers responses in return

orders and in different forms. Steps other than code and tests do
not have formal definitions. Some heuristics may be developed, but
they can hardly ensure a precise tagging. Therefore, instead of au-
tomation we preferred to support the observer with helper function-
alities in order to reduce the time and effort required for tagging.

To make tagging easier go-to-next-record and go-to-end-of-the-
current-line buttons are added to the Tagger. The former enables
the reviewer to jump to the next action without waiting the action
to be occurred. And the latter enables the reviewer to jump to the
action that takes place at the end of the current line. Since students
change the current line when starting to write a new design step,
using this button makes tagging easier.

Another feature that assists the observer is the jump detection
function. This function pauses the playing process and warns the
observer when the user is about to jump 3 lines above or below
from the current line. The observer, then, may put a new tag or
continue playing. According to our observations, one or two line
jumps mostly appear within the same tag. Therefore, we preferred
to warn the observer every time a 3-lines jump occur.

6. Future Work
Implementation of the Screen-Replay as a process tracking tool
enabled us to investigate the efficiency of the teaching methods we
use. Last three live exams (approximately 100 students each) of our
introductory programming course are already recorded. After the
end of tagging process we will investigate answers to the following
questions;

• Do students follow the suggested design guidelines while they
develop programs on their own?

• Are students, who follow the suggested guidelines, more suc-
cessful than the others?

• If not, is there any specific design pattern that is commonly used
by successful students?

Currently, our tool only records and replays text-based actions.
To be able to make more accurate analysis, the Screen-Replay tool
will be enhanced with support for images or other types of snips.

Finally, we are planning to add support for recording the inter-
action window of DrScheme. This will allow the investigation for;

• When and how many times students run their programs?
• What are the common errors they get?
• Do students act according to the error messages?

which can not be answered just recording the definitions window.

7. Conclusion
Evaluating how students construct programs is difficult with con-
ventional examinations as they evaluate the result and not the pro-
cess. Evaluating student process requires observing how they con-
struct their programs in a transparent manner. Else, we run the risk
of altering their behavior.

We have developed a tool for transparently observing how stu-
dents develop their programs. This tool was specifically designed
to identify the sequence of activities in terms of the “How to De-
sign Programs” (HtDP) methodology. The tool was implemented
and integrated into the DrScheme environment.

Screen-replay was used to record over 100 program consruc-
tions during live examinations. Replaying these constructions en-
abled observers to see the exact manner in which the programs
were constructed. With the Tagger tool observers were able to as-
sociate student activity with a segment of the construction. Finally,
a program construction is associated with a sequence of tags that
describes the entire constrution process.

Screen-replay worked well, as it perfectly revealed the entire
development process of students. We find the observation process
to be very interesting and insightful. It is too early to make any con-
clusions as of yet. Screen-replay is being used to analyze results of
student examinations. The results of the analysis will be reported.
Improvements to the tool are also in progress, especially in terms
of improving the tagging process.

Acknowledgments
We would like to thank Vehbi Sinan Tunalıoğlu and Bülent Özel
for their support to improve this tool and paper. The work in this
paper is partially funded by the Boğaziçi University Research Fund
BAP 07A107 and 08A103.

Scheme and Functional Programming, 2009 109

References
[1] J. Bennedsen and M.E. Caspersen. Assessing process and product -

a practical lab exam for an introductory programming course. pages
16–21, Oct. 2006.

[2] Annette Bieniusa, Markus Degen, Phillip Heidegger, Peter Thiemann,
Stefan Wehr, Martin Gasbichler, Michael Sperber, Marcus Crestani,
Herbert Klaeren, and Eric Knauel. Htdp and dmda in the battlefield:
a case study in first-year programming instruction. In FDPE ’08:
Proceedings of the 2008 international workshop on Functional and
declarative programming in education, pages 1–12, New York, NY,
USA, 2008. ACM.

[3] Stephen A. Bloch. Scheme and java in the first year. J. Comput. Small
Coll., 15(5):157–165, 2000.

[4] Charlie Daly and John Waldron. Assessing the assessment of
programming ability. In SIGCSE ’04: Proceedings of the 35th
SIGCSE technical symposium on Computer science education, pages
210–213, New York, NY, USA, 2004. ACM.

[5] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. How To Design Programs. MIT Press, Cambridge,
MA, USA, 2001.

[6] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. The structure and interpretation of the computer
science curriculum. J. Funct. Program., 14(4):365–378, 2004.

[7] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and
Shriram Krishnamurthi. The teachscheme! project: Computing and
programming for every student. Computer Science Education, 14(1),
2004.

[8] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
Drscheme: a programming environment for scheme. J. Funct.
Program., 12(2):159–182, 2002.

[9] Alessio Gaspar and Sarah Langevin. Restoring ”coding with
intention” in introductory programming courses. In SIGITE ’07:
Proceedings of the 8th ACM SIGITE conference on Information
technology education, pages 91–98, New York, NY, USA, 2007.
ACM.

[10] Herbert Klaeren and Michael Sperber. Die Macht der Abstraktion.
Teubner Verlang, 1st edition, 2007.

[11] George Polya. How to Solve It (Penguin Science). Penguin Books
Ltd, April 1990.

[12] Viera K. Proulx and Tanya Cashorali. Calculator problem and the
design recipe. SIGPLAN Not., 40(3):4–11, 2005.

[13] Viera K. Proulx and Kathryn E. Gray. Design of class hierarchies: an
introduction to oo program design. In SIGCSE ’06: Proceedings of the
37th SIGCSE technical symposium on Computer science education,
pages 288–292, New York, NY, USA, 2006. ACM.

[14] David Saff and Michael D. Ernst. An experimental evaluation of
continuous testing during development. SIGSOFT Softw. Eng. Notes,
29(4):76–85, 2004.

110 Scheme and Functional Programming, 2009

Get stuffed: Tightly packed abstract protocols in Scheme

John P. T. Moore
Thames Valley University, UK

moorejo@tvu.ac.uk

Abstract
This paper describes a layered approach to encoding and decod-
ing tightly packed binary protocols. The protocols developed are
based on an abstract syntax described via an s-expression. This ap-
proach utilises simple built-in features of the Scheme programming
language to provide a dynamic environment that facilitates the de-
velopment of extensible protocols. A tool called Packedobjects has
been developed which demonstrates this functionality. An exam-
ple application is presented to illustrate the flexibility of both the
tool and the Scheme programming language in this domain. In par-
ticular we will show how it is possible to embed this technology
into another application programming language such as C to power
its network communication. Using the example application we will
also highlight the choices available to the developer when deciding
whether or not to embed such technology.

1. Introduction
The International Standards Organisation (OSI) 7 Layer reference
model provided an academic framework for the design of network
protocols and standards [7]. In comparison to the OSI model the
TCP/IP model adopted a more simplified approach where amongst
other changes the Presentation Layer was consumed by the Appli-
cation Layer. As such, a network applications programmer needs to
consider how to structure their data when transferring it across an
internet. A number of competing technologies have been developed
and continue to develop in this area. When it comes to structuring
data in a human-readable way, XML has dominated. However, ap-
proaches to structuring binary data range from serialising native
data structures to transforming an abstract syntax into a more con-
cise binary form. Binary protocols continue to play an important
role in supporting network applications. Common uses include net-
work games and mobile communication. In addition, Google re-
leased their work on Protocol Buffers which was created to address
issues they faced in the area of high performance computing [2].
In this paper we discuss Packedobjects, a tool which was origi-
nally developed for the Chicken Scheme language and is now being
maintained as a Guile module [6]. Before describing Packedobjects
we will first provide an overview of some relevant techniques for
producing binary protocols.

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

2. Zeros and ones
Serialising data structures for transmission across a network is a
common technique. The programmer might have to handle differ-
ences in byte ordering if communication takes place across differ-
ent hardware platforms. In addition, the protocol designer is re-
stricted to describing the network protocol in terms of the native
data structures available in the language used. An alternative ap-
proach might involve using an abstract syntax to describe the net-
work protocol. This introduces some complexity. Ultimately this
abstract syntax will need to be represented by the programming
language. The traditional way of handling this is not dynamic. A
compiler is used to transform the abstract syntax into the native lan-
guage code. Typically the code generated will be combined with
application specific code and linked with vendor supplied code.
This is the approach which is taken by numerous Abstract Syn-
tax Notation 1 (ASN.1) tools [1]. ASN.1 originates from the world
of telecommunications. The philosophy of ASN.1 is to provide a
rich abstract syntax to describe network protocols and this syn-
tax should be transferred into binary before transmission. Different
techniques, or encoding rules, can be applied to make this transi-
tion from abstract syntax to binary. The abstract syntax allows the
protocol designer to think at a higher level and provides a common
ground between application developers working in different pro-
gramming languages. By using the Scheme programming language
we can provide a more dynamic approach where s-expressions are
used to describe the high level syntax. In keeping with a minimal-
istic tradition adopted by Scheme, we can represent a subset of the
ASN.1 standard when describing our protocols. By simplifying the
abstract syntax we can provide a dynamic runtime representation
within an s-expression which encourages exploration in the read-
eval-print loop (REPL).

3. A layered approach
Figure 1 shows how Packedobjects compares against the OSI
model. At the Application Layer, Packedobjects allows the cre-
ation of buffers. A buffer contains encoded data either ready to be
sent across a network or encoded data ready to be decoded. Packe-
dobjects has been designed to allow buffers to be created within
both C and Scheme. For example, the application developer can
decide to use C for all network communication and therefore cre-
ate the buffers in C. In either case Scheme is used to process the
contents of those buffers and this takes place at the Presentation
Layer. Transportation of the encoded data is shown happening at
the Transport Layer. In this case we have indicated UDP is used.
Packedobjects can also work over TCP, however some additional
work is required to delimit application messages over this byte
stream oriented transport protocol.

111

Figure 1. The OSI and Packedobjects

4. Data is code
Using an s-expression we can make use of quasiquote, unquote and
unquote-splicing to help specify and manipulate our network pro-
tocol description and its values. To illustrate some of this flexibility
we will use a fictitious protocol which describes shopping for food
and drink. In the process we will introduce some abstract data types
used by Packedobjects.

(define booze
’(sequence-of

(beer null)
(nibbles null)))

We start by defining a sequence-of null types. The sequence-of
type is a compound data type which consists of a repeating se-
quence of other data types, in this case a sequence of two null types.
The null type is one of several atomic data types available in Packe-
dobjects. It is an unusual data type in that it requires no value and
is typically used as an acknowledgement in protocol specifications.
More familiar atomic data types include integer, boolean, enumer-
ated and various string types.

(define grub
’(sequence

(pizza null)
(salad null)))

In addition to our drinks we should have some food. In this case we
use the sequence data type which specifies both pizza and salad.

(define trolley
‘(trolley set

(drink ,@booze)
(food ,@grub)))

(define basket
‘(basket choice

(food ,@grub)
(drink ,@booze)))

To carry our food and drink we could use a trolley or use a basket.
The trolley is large enough to carry both but we must choose
between the food or drink if we use a basket. We have introduced
two new compound data types. The set data type is a flexible type
which allows an unordered sequence of other types. Any item of a
set is also optional. Therefore, using the trolley we could decide to
only pack some food. Using the basket we must choose between
either the food or drink. The choice data type is a compound

data type which enforces this restriction. In both cases, we have
used unquote-splicing to reuse our definitions of food and drink
and therefore are able to produce concise protocol descriptions.
Having defined a protocol we must specify values according to their
description.

(define thirsty
’(basket

(drink
((beer) (nibbles))
((beer) (nibbles))
((beer) (nibbles))
((beer) (nibbles)))))

(define hungry
’(basket

(food
(pizza)
(salad))))

(define thirsty+hungry
‘(trolley

,(cadr hungry)
,(cadr thirsty)))

Depending on our mood, we might be thirsty, hungry or both. In
the case of being both thirsty and hungry we will use a trolley.
This example illustrates the use of unquote to reuse our definitions
of being hungry and thirsty. Note how we apply cadr to represent
removing the basket from the value list ready to be placed in the
trolley instead. Having defined our protocol and values we are
ready to encode the data ready for transmission over a network.

(let* ((bufsize 10)
(buffer (make-buffer bufsize))
(encoder (make-encoder buffer trolley))
(size (encoder ’pack thirsty+hungry))
(pdu (pdu-from-buffer buffer size)))

pdu)

The output of the encoder is a tightly packed bit stream. In this case
just two bytes are required to represent:

(trolley
(food (pizza) (salad))
(drink ((beer) (nibbles))

((beer) (nibbles))
((beer) (nibbles))
((beer) (nibbles))))

Conversely, the decoder will take a tightly packed bit stream and
reproduce a list of values.

(let* ((bufsize 10)
(buffer

(make-buffer-from-string pdu bufsize))
(decoder (make-decoder buffer trolley)))

(decoder ’unpack))

The resulting output will ordinarily be equal to the original value
list but in this case the set data type was used and this represents
a special case. The ordering of decoding will match that of the
protocol description. Therefore in this example we get:

(trolley
(drink ((beer) (nibbles))

((beer) (nibbles))
((beer) (nibbles))
((beer) (nibbles)))

(food (pizza) (salad)))

The process of encoding and decoding is completely dynamic.
Figure 2 summarises the encoding process. The encoder obtains
data by dynamically combining the values supplied with data from

112 Scheme and Functional Programming, 2009

Figure 2. Dynamic encoding

Figure 3. Dynamic decoding

the protocol specification. The encoder simply traverses the re-
sult calling the appropriate foreign functions corresponding to the
underlying C based encoder. The end product is a Protocol Data
Unit (PDU) which is ready to be transported across a transmission
medium. The encoding produced is an unaligned bit stream based
on Packed Encoding Rules (PER) [3].

The reverse process of decoding the PDU is more straight for-
ward as summarised in figure 3. Here the protocol specification is
used to drive foreign function calls to the C decoder which returns
back values to Scheme to be combined into a list. Both the encoding
and decoding processes illustrate how a clear divide exists between
the low level C routines and the high level s-expression used to
represent data. In the following section we will further describe the
lower layer routines.

5. Bit fiddling
Bit manipulation is sometimes viewed as the practice of hackers
[8]. In this section we will attempt to describe the techniques used
by Packedobjects to pack and unpack bits in an accessible way to
the reader. Both the encoder and decoder operate on words. Thus,
working with strings involves multiple calls to encode or decode
individual characters. As a result, protocols that are dominated with

 LSB MSB

leftover

 Word

OR

 W2 W1 Wn

1010101010

1010101010101010

32

 1

 2

 3

10101010

Figure 4. Encode buffers

string data are not well suited to Packedobjects. In a worst case
scenario you may try to encode or decode a large amount of 8 bit
strings. Packedobjects has no notion of byte boundaries, therefore
the strings could start at any bit position within a contiguous block
of memory. Reading the contents of such a string would require bit
manipulation. The approach taken by Packedobjects is that ”every
bit counts”. This is reinforced by the fact the default string type
encodes in 7 bits. Although it may appear an extreme approach to
take it does allow for a simplified view of how all types are encoded
and decoded into words. The following subsections will illustrate
this.

5.1 The encoder
The encoder works using two buffers [4]. One is fixed in size
corresponding to the number of bits within a word, the other can
be dynamically allocated. The word size is determined by the
hardware platform and equals 32 bits in the example given. The
fixed buffer can be visualised as an array of 32 words as depicted
in figure 4. The dynamic buffer is typically created to accommodate
the largest PDU so effectively operates as a statically allocated
piece of memory. The fixed buffer is used to construct the bit
sequences before they are copied across to the dynamic buffer. A bit
sequence is copied to the appropriate word of the fixed buffer and
then shifted into position. The bits are aligned so that after an OR
operation on the array of words a single word is produced which
can then be copied across to the dynamic buffer. This sequence is
illustrated in figure 4. To begin with the bit pattern ”10101010” is
copied to the first word in the fixed buffer. The eight bit pattern must
be shifted so that it follows the network byte order and therefore has
its most significant bit (MSB) at bit position 32. The next bit pattern
”1010101010101010” is added to the second word and shifted so
that its MSB starts at bit 24. This leaves room for only eight more
bits to be added within the third word. If, for example, the ten bit
pattern ”1010101010” is to be added, then the eight most significant
bits would be copied to the remaining room in the fixed buffer. The
entire fixed buffer then has its contents OR’ed and the resulting
word is copied to the dynamic buffer. The two bits left over are put
back into the fixed buffer starting from the MSB of the first word.
The pseudo code for the encode algorithm is provided in figure 5.
The algorithm makes just two tests to see whether a word boundary
is crossed in the fixed buffer and whether a full word exists already.
The algorithm is recursive. It calls itself whenever there is a value
left over to encode after a full word has been copied to the dynamic
buffer.

5.2 The decoder
The decoder algorithm (figure 6) is slightly more straight forward
than the encoder algorithm. A PDU is decoded by masking off the
desired bits to form a value. The size of a word determines the size
of the window which is placed over the data to decode. The window

Scheme and Functional Programming, 2009 113

BEGIN /* encode */

accept a number and a bit length

IF the bit pattern is unable to fit into the space
available in the current word of the fixed buffer THEN

fit as many bits in as possible
OR the fixed buffer
copy the result to the dynamic buffer
reset the fixed buffer
GOTO BEGIN to encode the leftover bit pattern
RETURN

ENDIF

copy the number to the correct position in the
next word of the fixed buffer

IF we have a full word already THEN
OR the fixed buffer
copy the result to the dynamic buffer
reset the fixed buffer

ENDIF

END */ encode */

Figure 5. Encode algorithm

BEGIN /* decode */

accept a bit length

IF current bit position has reached a word boundary THEN
fetch a word from the buffer
store a copy of the word

ENDIF

mask out (AND) the bit pattern from current word

IF bit pattern crosses word boundary THEN
fetch the next word from the buffer
store a copy of the word
obtain the missing part of the bit pattern
merge (OR) the two bit patterns together

ENDIF

return the result

END */decode */

Figure 6. Decode algorithm

 msb lsb

W2W1

 msb lsb

Figure 7. Decode window

moves in word sized increments over the PDU. Provisions must
be made to handle bit patterns that cross over word boundaries.
Values obtained from different words must be merged together to
form a single bit pattern. Figure 7 shows that the area between
two words can contain the desired bit pattern. As with the encode
algorithm, just two test conditions exist: one to examine whether
a new word should be fetched from the PDU buffer and one to
examine if the value to extract lies between two word boundaries.
By storing a copy of the last word obtained, it may be possible

Figure 8. Application architecture

to avoid fetching a word each time the routine is called. Having
described the encoder and decoder we will have completed our
discussion on the layered approach of the tool and can now focus
on a practical example of its use.

6. Example application
The previous sections provided an insight into the flexibility of us-
ing an s-expression to represent an abstract syntax and described
its transformation into bits. In this section we will provide a more
practical example that also highlights the flexibility of the Scheme
language itself. We will describe an application that interfaces to
the social networking and micro-blogging service Twitter. The ap-
plication, known as geotwitta, is able to calculate the distance of
other users and then post the result to the user’s account [5]. Figure
8 summarises the architecture of the application. In order to calcu-
late the distance of other users a server is required to manage the
location of each user. Each client simply ”pings” in its coordinates
to the server and in response retrieves a list of the distances of other
users. Any new responses returned are then posted to Twitter us-
ing the HTTP protocol. An example post might appear as follows:
#geotwitta @jptmoore appears to be about 18791.955 kilometers
away from me.

6.1 The design
Although a simple protocol and simple application, it provides
enough scope to show how the Scheme language and in particu-
lar Guile can be embedded inside a C application to help power
the network protocol. However, we should first state some influ-
encing design criteria for our example application other than the
fact it must post to Twitter. Firstly, we want the application to be
light-weight in terms of network usage. We also want to be able
to easily build a packaged version which could get distributed and
installed on well known Linux distributions such as Ubuntu. The
first design condition is not really relevant to the client but rather
to the server. We would like our low-cost server to be-able to han-
dle multiple client requests without issues of bandwidth or load.
Therefore, we shall use UDP to transport the data and Packedob-
jects to tightly pack the application messages (PDUs). In terms of
the second design decision we would like users to be able to eas-
ily install the application without compiling from source. Scheme
implementations such as Guile provide excellent support for using
open source tools such as autoconf. This in turn allows us to easily
apply automated routines to transfer the builds into Debian pack-
ages. Having provided some background to the design we can now
discuss implementation specifics.

114 Scheme and Functional Programming, 2009

Figure 9. Client technology

Figure 10. Server technology

6.2 Implementation choices
The client consists of a C application which uses features of GLib
1 to simplify tasks such as calling the Twitter web API. The other
main feature of the client is it embeds Guile (including Packedob-
jects) to facilitate the encoding and decoding of network packets.
Figure 9 summarises the technologies built into the client. The end
product is an application binary compiled from C source code. Fig-
ure 9 shows a relationship between Packedobjects and C. Although
Packedobjects is a Guile module it also heavily relies on calls to
C for its low level functionality. This highlights the true flexibil-
ity with working with an embeddable language where callbacks
to the host language may also occur. The server, however, takes a
different approach and is completely written in Guile. In this case
the end product is a script. Figure 10 summarises the technologies
used. The server is simply a Guile script which uses the Packedob-
jects module. This illustrates one design choice available to the de-
veloper when using embeddable Scheme implementations. Do you
write the application in Scheme and perhaps interface to C or do
you write the application in C and embed Scheme? If the developer
decides to embed Scheme into their C application, another choice
exists. How much should be done in C and how much should be
done in Scheme? In some cases there may be an obvious technical
divide. However, often less technical factors influence the decision,
such as the ability to re-use code. For example, client software that
talks to well known Web 2.0 services is not difficult to find amongst
various open source C based projects. Therefore, although it would

1 GLib is a utility library developed as part of the GNOME project.

not be difficult to write this functionality completely in Scheme it
was more straightforward to simply use some existing C code. The
end product is a binary that is not only easily distributable but also
dynamically configurable.

7. Future work
Challenges exist from taking such a dynamic approach to network
protocol design. Improvements to the Packedobjects tool can be
made in areas such as performance and safety.

In section 4 we saw how expressive a protocol could be but
how does this compare to tools like Protocol Buffers? Although
subjective it provides a useful additional metric of comparison.

8. Conclusion
The designer of a network protocol must make a number of choices.
The choices taken will have an impact on the size and structure of
the data communicated. In some cases it is necessary to try and en-
code the data as efficiently as possible, in which case a binary for-
mat may be used. Similar to the way we might migrate from a low-
level language and think about a problem in a high-level language,
the protocol designer should not think in terms of a low-level binary
format. Instead the designer should use a more expressive alterna-
tive, one that will still produce equivalent concise binary output.
In this paper we presented Packedobjects, a tool which provides
such an alternative. By utilising s-expressions from the Scheme
programming language, Packedobjects is able to describe network
protocols using an abstract syntax. This abstract syntax is dynam-
ically transformed into a tightly packed bit stream for communi-
cation across a network. The Scheme programming language pro-
vides a number of advantages for the design of such a tool. Firstly
the concept of ”data is code” eliminates the need for using a com-
piler to transfer the abstract syntax into a concrete syntax which
is usable in the native programming language. Instead we gain the
benefits of using a Scheme interpreter to design and test our proto-
cols. In addition, we obtain expressive features such as quasi-quote
to help create concise and re-usable protocol definitions. The other
main benefit of using Scheme for a tool like Packedobjects is that it
provides some implementation specific choices. We have the choice
of building solutions completely in Scheme itself but also have the
ability to embed the language into a host language such as C. In this
paper we have illustrated the benefits of this approach such as code
reuse and the ability to easily package and distribute the applica-
tion. Even though we use C as the host language we are still able
to dynamically control the network protocol using the embedded
Scheme.

References
[1] DUBUISSON, O. ASN. 1 Communication between Heterogeneous

Systems. Morgan Kaufmann, 2001.
[2] GOOGLE. Protocol Buffers. http://code.google.com/p/protobuf/, July

2007.
[3] INTERNATIONAL TELECOMMUNICATION UNION. Information

Technology — ASN.1 Encoding Rules — Specification of Packed
Encoding Rules (PER). ITU-T Recommendation X.691, July 2002.

[4] MOORE, J. On the Performance of Unaligned Packed Encoding Rules
when Applied to a Non-optimised Protocol Specification. PhD thesis,
University of Sheffield, 2001.

[5] MOORE, J. Geotwitta. http://zedstar.org/blog/2009/05/02/geotwitta/,
May 2009.

[6] MOORE, J. Packedobjects. http://packedobjects.sourceforge.net/,
2009.

[7] TANENBAUM, A. Computer Networks. Prentice hall PTR, 2002.
[8] WARREN, H. Hacker’s Delight. Addison-Wesley Longman Publishing

Co., Inc. Boston, MA, USA, 2002.

Scheme and Functional Programming, 2009 115

Distributed Software Transactional Memory

Anthony Cowley C.J. Taylor
University of Pennsylvania

{acowley, cjtaylor}@seas.upenn.edu

Abstract
This report describes an implementation of a distributed
software transactional memory (DSTM) system in PLT
Scheme. The system is built using PLT Scheme’s Unit
construct to encapsulate the various concerns of the sys-
tem, and allow for multiple communication layer backends.
The front-end API exposes true parallel processing to PLT
Scheme programmers, as well as cluster-based computing
using a shared namespace for transactional variables. The
ramifications of the availability of such a system are con-
sidered in the novel context of highly dynamic robot swarm
programming scenarios. In robotics programming scenarios,
difficulty with expressing complex distributed computing
patterns often supersedes raw performance in importance.
In fact, for many applications the data to be shared among
networked peers is relatively small in size, but the man-
ner in which data sharing is expressed leads to tremendous
inefficiencies both at development time and runtime. In
an effort to maintain focus on behavior specification, we re-
duce the emphasis on messaging protocols typically found in
distributed robotics software, while providing even greater
flexibility in terms of how data is mixed and matched as it
moves over the network.

1. Introduction
Several well-studied methods for effectively distributing
the execution of a program over multiple processors have
emerged in response to the difficulties faced by program-
mers tasked with harnessing such execution platforms. A
minimally invasive way to exploit a heterogeneous comput-
ing environment is to provide support for remote procedure
calls (RPC). This approach has the benefit of potentially
requiring only minimal changes to the surface of a program.
RPC systems are valued for their ability to keep underlying
inter-processor communications abstract from the point of
view of the high-level program, thus providing the smooth
integration of computing capabilities that are unavailable to
the local processor. But when computing resources are not
completely orthogonal, that is, the local, calling processor
could be doing something useful while a remote processor
generates a value, the RPC abstraction can be unsatisfying

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

due to missed opportunities for concurrent execution. Put
simply, RPC enables easily distributed serial execution.

Concurrent execution, on the other hand, brings with it
sweeping implications for the semantics of distributed pro-
grams along with the desired more efficient use of available
computing resources. Specifically, the original program must
be modified in both control flow specification and data ac-
cess restrictions. In order to avoid leaving a calling proces-
sor idle, certain actions analogous to function calls must be
asynchronous on some level. That is, the callee need not fin-
ish its work before the caller is allowed to proceed. However
asynchronous invocation suggest a dual mechanism designed
to handle asynchronous returns. This now requires the im-
plementation of handler functions whose ultimate place in
the global execution order is not deducible from lexical in-
spection. To further muddy the waters, the fact that multi-
ple parts of a program are executing simultaneously suggests
that no assumption of the data dependency propositions im-
plied by a program’s text are safe. For example, Algorithm
1 may no longer be trivially reduced to y ⇐ 1 if x refers to
a shared memory location.

Algorithm 1 A Seemingly Innocent Sequence
1: x⇐ 1
2: y ⇐ x

1.1 Message Passing
One approach to eliminating data dependency ambiguities is
adherence to a message passing style design. Such a design,
perhaps best exemplified by Erlang [1] and its ideological off-
spring Termite Scheme [7], makes communication between
pieces of serially executed code explicit by differentiating
potentially remote communication from the common func-
tion call. Instead of being an almost transparent retrofit of
standard procedural code as with RPC, the actions of send-
ing and receiving messages are given distinct syntax and sole
governorship over the interactions between bits of program
code that may otherwise execute fully asynchronously. This
separation of messages from function calls may, as in Er-
lang, be used to isolate serial execution from unintended in-
terference from concurrently executing program code while
providing a scaffolding centered around messaging protocols
for distributed applications to be built upon.

While structuring programs whose identity is intrinsi-
cally distributed around the protocols that define their dis-
tribution is a productive endeavour, it can be an ill fit when
the distributed nature of the program is secondary to serial
algorithm complexity. In such cases, forcing a communica-
tion protocol front and center in the program code can actu-
ally hide more natural structuring techniques based around

116

algorithmic manipulation of abstract values. Another type
of situation in which explicit message passing design tech-
niques may fall short is when connectivity between concur-
rent processes is highly dynamic. In such cases, it may be
desirable to abstract complexity at the message passing level
from core application-level code. While this is certainly pos-
sible to express in a message passing framework, it becomes
less clear that message passing should be explicit at all when
it is best thought of as an implementation detail.

1.2 Software Transactional Memory
Software Transactional Memory (STM) [17] is a technique
for rationalizing shared memory usage in concurrent sys-
tems. Beginning with an assumption of atomicity of stores
and loads of individual memory locations, composition of
memory accessing operations has typically been effected by
function abstraction. In this approach, compound memory
mutations – in which multiple addresses are read or written
– are implemented as sequential operations and often hidden
behind the simpler interface of a single function call. How-
ever the era of multiprocessor machines has rendered this
abstraction technique virtually useless in cases where multi-
ple threads may be accessing overlapping memory segments.
STM systems directly address this problem by providing a
new abstraction specifically for compositional memory ac-
cess patterns.

An STM runtime is responsible for providing transac-
tional semantics to programmer-annotated regions of pro-
gram code. This means that all operations within a particu-
lar transaction are seen by all concurrent processes as either
all happening at once, or not happening at all. While this de-
sired atomicity may be achieved by manual usage of locks to
ensure mutual exclusion, an STM provides the programmer
with a much simpler interface that allows for greater com-
posability and modularity [8]. Consider a manual locking
scheme governing access to two shared memory addresses
identified by variables a1 and a2. These variables may each
be equipped with a lock, say lock1 and lock2, respectively,
that is to be acquired before a variable may be accessed. In
order to write a program built on such a foundation, each
function must ensure that all necessary locks are acquired
before any side effects become visible to other processes,
should not acquire more locks than necessary in order to
retain all potential concurrency, must ensure that locks are
freed in error conditions, and must abide by some agreed-
upon lock acquisition ordering policy in order to prevent
deadlock with processes with overlapping locking require-
ments [12].

In some ways, the visibility of a manual locking scheme
in concurrent programs is similar to the visibility of a mes-
sage passing scheme in a distributed program: both expose
an underlying implementation detail at many levels of ab-
straction. In the case of manual locks, composition of two
properly synchronized operations is burdened by the need
for the composite operation to wrap itself in a union of the
locking requirements of the component operations. The lock-
ing requirements are never properly abstracted.

2. DSTM in PLT Scheme
Expanding upon the example of a function that manipu-
lates two shared locations, consider a function that trans-
fers money between two bank accounts whose balances are
stored in boxes, a1 and a2, shared across multiple processes.
This function randomly selects one account to have money

withdrawn from it and deposited in the other account after
some amount of time has passed (to simulate other work).

(define (transfer-unsafe)
(let-values

(((src sink) (if (= (random 2) 0)
(values a1 a2)
(values a2 a1))))

(let ((amt (random (unbox src))))
(set-box! src (− (unbox src) amt))
(sleep (/ (random 1000) 1000.0))
(set-box! sink (+ (unbox sink) amt)))))

Such a function has a social contract that it must obey
that is not captured by low-level memory access semantics.
First, no more can be transferred from the src account to
the sink account than src’s initial balance (i.e. negative
balances are not allowed). Second, no concurrent process
should see a state where money has apparently disappeared
from the system due to it being in-flight from src to sink.
Note that the first constraint may be violated if src’s bal-
ance is reduced by a concurrent process after amt is chosen,
while the second is violated by any process operating in the
time between the two set-box! calls. Both of these con-
cerns are addressed by the Distributed Software Transac-
tional Memory (DSTM) system, here implemented in PLT
Scheme [5] due to its robust macro facilities and elegant
threading model.

The DSTM system provides several features accessible
through a few simple operations,
• make-tvar makes a new transactional variable
• set-tvar! sets the value of a transactional variable
• get-tvar gets the value of a transactional variable
• atomically wraps a block in a composable transaction

If the variables a1 and a2 now refer to transactional
variables, then the function may be rewritten as,

(define (transfer-safe)
(atomically
(let-values

(((src sink) (if (= (random 2) 0)
(values a1 a2)
(values a2 a1))))

(let ((amt (random (get-tvar src))))
(set-tvar! src (− (get-tvar src) amt))
(sleep (/ (random 1000) 1000.0))
(set-tvar! sink

(+ (get-tvar sink) amt))))))

In addition to the core STM features, transactional vari-
ables are defined in a distributed shared memory space
across participating peers. The above program thus demon-
strates transactional manipulation of variables efficiently
replicated over an abstract communication layer. The key
features of this program are:

(a) Mutual exclusion is composable and flexible, requiring
no resource identification by the initiator of the transac-
tional behavior.

(b) The protocols of inter-process communication are com-
pletely abstract from algorithm specification yet opti-
mized to package composite updates together and in-
tegrate both push and pull dissemination strategies to
most effectively utilize communication resources.

Scheme and Functional Programming, 2009 117

Figure 1. DSTM Architecture

2.1 Implementation Overview
The presented programming model involves the programmer
annotating regions of program code that refer to shared vari-
ables whose access semantics are to be atomic. That is, any
sequence of loads and stores may be treated as occurring
free of the effects of any concurrent process. There is but a
single annotation, atomically, and annotated regions may
nest both lexically and dynamically. As a further assurance
of proper usage, variables to be shared must be created us-
ing make-tvar, and may only be accessed by set-tvar! and
get-tvar, which only function when called within the dy-
namic scope of an atomically block. The implementation
of this system rests upon several layers of underlying func-
tionality, shown with dependencies indicated in Figure 1.
Each layer provides abstract features which enable the layer
above.

The system, as described, is implemented as a composi-
tion of Units [15]. The Units mechanism provides a way to
create modules parameterized by their dependencies. This
is an improvement over the traditional syntactic require
mechanism (import in some other languages) because the
parameterization becomes part of the runtime object itself,
rather than a dependency that is resolved by the compiler
before any code is run. The crucial benefits of the Units
mechanism to the DSTM implementation are the fact that
dependencies are not coded into modules, thus elevating con-
figuration to a first-class operation, and that they provide a
clean way to share state in a controlled manner. As an ex-
ample, message passing functionality is defined with a few
primitive operations,

#lang scheme/signature
start
wait-for-peer-discovery add-new-peer-handler
fork ! ?

This message-passingˆ Signature specifies that a mes-
sage passing Unit should support basic peer discovery hooks,
the ability to fork new peers, and mechanisms for asyn-
chronously sending or synchronously receiving a message,
! and ?, respectively. The benefit to keeping the message
passing layer this abstract is that different messaging imple-
mentations may be swapped in without changing the mod-
ules that depend on that functionality. The current imple-
mentation includes a message passing layer that uses UDP
multicast for peer discovery and TCP for packet transfer
between peers, as well as another implementation defined
entirely on top of Unix-style port operations for situations
where network sockets are unavailable.

In order to allow for an expandable number of net-
work consuming protocols, a management layer is wrapped
around the low-level message passing interface. This layer is
parameterized by the protocol implementations that make
use of messaging capabilities, which are themselves param-
eterized by the underlying message passing functionality.

(a) (b) (c)

Figure 2. Lock ownership over time. (a) Initially, node 1
creates the lock and retains ownership, a fact known by every
node that is aware of the lock. (b) When node 2 requests
the lock, node 1 sets its parent pointer to node 2. (c) When
node 3 requests the lock, it contacts node 1 who forwards
the request to node 2. Node 1 uses this incident to update
its parent pointer. Node 2 updates its parent pointer when
ownership of the lock is transferred to node 3.

The management layer requires a list of Units exporting the
protocol-handlerˆ signature,

#lang scheme/signature
handle-msg initial-state discovery-handler

each of which is parameterized by a minimal messaging
interface,

#lang scheme/signature
! ? my-node-id

which the management layer provides. The high-level DSTM
system is built atop a composition of a Distributed Shared
Memory (DSM) system, and associated messaging protocol,
and a Distributed Locks system and protocol.

2.2 Distributed Shared Memory
The DSM implementation is not very complex because of the
way functionality is expressed in a highly modular fashion.
The facilities it exposes to the DSTM system are limited
to a basic memory interface defined in the dsm-interfaceˆ
signature,

#lang scheme/signature
dsm-store dsm-load dsm-snapshot
dsm-invalidate dsm-push dsm-pull

that specifies interfaces to, in order, replicate a write oper-
ation across all connected peers (remember that the DSM
system takes as a parameter an active message passing mech-
anism), load a value, obtain a snapshot of memory contents,
invalidate a particular memory location on a list of selected
peers, push a write operation to a list of recipients, and pull
a new value from an identified peer. The concrete represen-
tation of the DSM state is a functional hash table mapping
memory locations to tuples of values and validity bits. The
hash table state is passed to the DSM protocol implemen-
tation’s handle-msg function each time a DSM-related mes-
sage arrives, with the state object returned by handle-msg
retained by the protocol manager for subsequent invoca-
tions.

2.3 Distributed Locks
Distributed mutual exclusion is implemented using a tree-
based token passing algorithm due to Raymond [16]. In this
algorithm, each node retains a reference to its parent in
a spanning tree associated with each lock. When a node
wishes to acquire a lock, it sends the request to its parent.
When a node receives a request, it can grant the request if

118 Scheme and Functional Programming, 2009

it was holding the lock without retaining exclusive access
for itself (that is to say, each lock is always held by some
node whether or not any node is in the critical section
associated with that lock), it can forward the request to
its own parent if it is not the root of the tree, it can create
a deferred link to the requester if it was already waiting for
the specified lock itself, or it can forward the request over an
existing deferred link. In this way, each acquisition request is
delegated to a node’s parent, and requests for a lock queue
up as they percolate around the tree. The tree structure
itself is dynamically updated by having each node update
its parent pointer when forwarding a request up the tree. A
key feature of this algorithm is that it allows for sub-groups
within the network to form around a locally-contended lock.

The changing shape of the lock spanning tree is illus-
trated in Figure 2. In this example, a lock is initialized by
node N1. When nodes N2 − N4 learn of this lock, either
during a peer discovery synchronization or on-demand re-
source discovery, each maintains a record of this ownership
information. If N2 wishes to acquire the lock, it sends this
request along its parent pointer to N1 who may grant ac-
cess to the lock. At this point, N1 updates its own parent
pointer, which previously was a self-loop, to point to N2. In
the example, N3 is the next to request the lock, and it sends
this request to its parent, N1, who forwards the request to
its parent, N2, and updates its own parent pointer with
this new information.

A great benefit of this lock acquisition mechanism is the
locality of agreement needed for ensuring mutual exclusion.
In token ring schemes, by way of comparison, a lock token
is passed among every peer in a network. If a node is not
waiting to enter a critical section guarded by the lock, it
simply passes the token along to the next in line. While this
round robin schedule of mutual exclusion can be efficient
when nodes are equally likely to be waiting for the lock, it is
very inefficient when there is more structure in the patterns
of lock acquisition. The tree lock mechanism, on the other
hand, is more adaptable to asymmetric access patterns: lock
tokens are passed among those trees closest to the root of
the lock’s spanning tree, while nodes that seldom acquire the
lock are pushed to the leaves, and rarely, if ever, consulted.

The specific algorithm used to ensure mutual exclusion is
abstract to the DSTM system itself, which simply imports
the lock-interfaceˆ signature,

#lang scheme/signature
create-lock acquire release try-acquire?

thus leaving the door open to application configurations that
rely on alternate distributed lock implementations, such as
the aforementioned token ring scheme.

2.4 DSTM
The STM and its interface are heavily inspired by the
Haskell implementation of STM present in GHC [8]. It is
implemented here as a composition of the distributed com-
puting components, the distributed lock mechanism, and
the distributed shared memory system. A nice character-
istic of this breakdown is that the locking system does not
address memory stores or loads, the DSM system cares not
of locks, and neither is dependent on any particular inter-
process communication mechanism. When a transaction be-
gins, a DSM snapshot is obtained and a transaction log is
started. When a transaction wishes to commit, the necessary
distributed locks over all nested transactional scopes are ac-
quired in a specific order or the transaction is aborted. Once

the locks are acquired, the transaction log is compared to
the current state of the DSM and committed if viable. If a
conflict is detected, the log is thrown away, and the trans-
action is re-started. Finally, the snapshot mechanism allows
for Multiversion Concurrency Control (MVCC), so called
due to the fact that multiple versions of the data store may
be live concurrently. This model has as benefits that read
operations do not block because they are guaranteed a con-
sistent world view, and that concurrent execution proceeds
optimistically, unhindered by the possibility of long running
operations holding locks for their duration.

3. DSTM Applied to Concurrent Robotics
Modern robot software design often mimics a robot’s mod-
ular hardware construction by building applications from
asynchronously executing software modules [2, 6, 19], in-
spired by early work on process calculi such as CSP [11]
and the π-calculus [13], as well as the Actor model of con-
current systems [9, 10, 18]. These methods of isolating con-
current processes from each other obviate concerns about
shared mutable state, make potential processor boundaries
more explicit via message passing operations, and, arguably,
make concurrency design first class by promoting the notion
of concurrent execution to a level where it is more clearly
represented in the syntax of the program.

Such approaches to software design have pushed the field
of multi-robot collaboration forward, yet have seen less up-
take in the field of robot swarms. Robot swarm design in-
volves harnessing the capabilities of groups of hundreds or
thousands of agents to accomplish some task. In such sys-
tems, it is impossible to manually customize behaviors for
each agent, so more automated approaches to behavioral dif-
ferentiation are needed. Some approaches involve behaviors
that naturally mutate as they spread across a population
in such a way that a desired collective effect is achieved
[14], while others involve reactive formulations that allow
environmental inputs to guide structured behavior [4]. The
latter approach, where structure emerges in response to
the environment may be augmented by locally imperative
behaviors at varying scales [3]. This ability may be intu-
itively understood as small coalitions of agents joining to-
gether to execute a coordinated action within the larger
context of swarming behaviors. The most critical require-
ment for the expression of this capability is that spontaneous
small to medium scale coordination be possible without be-
ing crushed under the scaling burden implied by enormous
swarm populations.

3.1 Connectivity by Need
The ability to safely update shared estimates of various
quantities, such as position, velocity, and appearance, re-
duces programmer burden for tasks like cooperative target
tracking. When a robot observes some features of an identi-
fied target, it transactionally updates the estimates of those
feature values shared by all connected robots. The ability
to atomically reference and update every possible combina-
tion of shared data without explicit consideration for locks
or message types is powerful, but the underlying informa-
tion dissemination mechanism can not entirely sacrifice ef-
ficiency for convenience. In practice, capturing the connec-
tivity of the network of behavioral modules becomes the
meta-programming of a multi-robot system.

An alternative to separate specification of processing and
connectivity is to make connectivity an implicit side effect
of behavior. This approach has the advantage that it lessens

Scheme and Functional Programming, 2009 119

the tension between procedure design and connectivity spec-
ification that can exist in Actor-centric designs. The strat-
egy presented here allows for both push and pull data sharing
mechanisms to coexist, with situationally appropriate hand-
off between the two modes of operation. When, for exam-
ple, two nodes are each repeatedly updating a shared value,
the system should push updates generated by each to the
other. However, when an agent has neither read nor written
a shared location in some time, it is wasteful to push up-
dates to it. Instead, such an agent should pull in fresh data
when it next tries to read from the shared memory location.

As a lock is transferred between nodes, one can maintain
an updated list of “interested parties” for a given datum.
The current DSTM implementation manages this informa-
tion as an ordered list, referred to as a push-list, of the most
recent owners of the lock associated with a shared memory
location. When a node reads a locally invalidated memory
location or acquires a lock, it refreshes its local cache and
adds itself to the head of the push-list. At this time, the
node also cuts off the tail of the list at the position where
it last inserted itself, and sends DSM invalidation messages
to all affected nodes, who must then initiate a pull the next
time they read from that location. The function for manag-
ing the push-list associated with a DSTM datum is shown
below, with the minor addition that a node already at the
head of a push-list will not drop the entire push-list, but
rather leave it as is.
(define (update push-list my-id)

(if (or (null? push-list)
(= my-id (car push-list)))

(values push-list '())
(let-values

(((a b) (break (λ(x) (= my-id x))
push-list)))

(values (cons my-id a)
(if (null? b) b (cdr b))))))

4. Discussion and Future Work
The DSTM system presented here allows for very specific
compound data structure definitions and transfer protocols
that require no specific programmer effort to establish. In-
stead, synchronization and communication protocols are a
direct consequence of behavior specification: if a behavior
depends on multiple values, then those values are safely
bundled together for that behavior. The DSTM system is
currently being used for simulations of scalable behaviors
for mobile robots, but is also intended to serve as an op-
erational model for a forthcoming security system in which
the targets move, but the sensors do not. In such a system,
one again finds different groups of sensors associated with a
given shared datum as time advances. This can be dealt with
by explicit target track ownership handoffs between sensor
nodes, or implicitly and automatically by a DSTM system.

Acknowledgments
Rajeev Alur’s CIS 640 class at UPenn.

References
[1] Joe Armstrong. The development of erlang. In ICFP ’97:

Proceedings of the second ACM SIGPLAN international
conference on Functional programming, pages 196–203, New
York, NY, USA, 1997. ACM.

[2] Anthony Cowley, Luiz Chaimowicz, and Camillo J. Taylor.
Design Minimalism in Robotics Programming. International

Journal of Advanced Robotic Systems, 3(1):31–37, March
2006.

[3] Anthony Cowley and Camillo J. Taylor. Orchestrating
Concurrency in Robot Swarms. In Proceedings of the
IEEE/RJS International Conference on Intelligent Robots
and Systems IROS ’07, October 2007.

[4] Michael De Rosa, Seth Copen Goldstein, Peter Lee, Jason D.
Campbell, and Padmanabhan Pillai. Programming modular
robots with locally distributed predicates. In Proceedings
of the IEEE International Conference on Robotics and
Automation ICRA ’08, 2008.

[5] Matthew Flatt et al. Reference: PLT scheme. Reference
Manual PLT-TR2009-reference-v4.2, PLT Scheme Inc., June
2009.

[6] B. Gerkey, R. Vaughan, K. Stoy, A. Howard, G. Sukhatme,
and M. Mataric. Most Valuable Player: A Robot Device
Server for Distributed Control. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1226–1231, 2001.

[7] Guillaume Germain, Marc Feeley, and Stefan Monnier.
Concurrency oriented programming in termite scheme. In
Proceedings of the Workshop on Scheme and Functional
Programming, 2006.

[8] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Mau-
rice Herlihy. Composable memory transactions. In PPoPP
’05: Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages
48–60, New York, NY, USA, 2005. ACM.

[9] Carl Hewitt. Viewing Control Structures as Patterns of
Passing Messages. Journal of Artificial Intelligence, June
1977.

[10] Carl Hewitt, P. Bishop, and R. Steiger. A universal modular
actor formalism for artificial intelligence. In Proceedings 3rd
International Joint Conference on Artificial Intelligence,
pages 235–245, 1973.

[11] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21:666–677, 1985.

[12] Simon Peyton Jones. Beautiful Code, chapter Beautiful
Concurrency. O’Reilly, 2007.

[13] Robin Milner, Joachim Parrow, and David Walker. A
calculus of mobile processes, part i. I and II. Information
and Computation, 100, 1989.

[14] Radhika Nagpal. Programmable self-assembly using
biologically-inspired multiagent control. In Proceedings
of the 1st International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), July 2002.

[15] Scott Owens and Matthew Flatt. From structures and
functors to modules and units. In ICFP ’06: Proceedings
of the eleventh ACM SIGPLAN international conference
on Functional programming, pages 87–98, New York, NY,
USA, 2006. ACM.

[16] Kerry Raymond. A tree-based algorithm for distributed
mutual exclusion. ACM Trans. Comput. Syst., 7(1):61–77,
1989.

[17] Nir Shavit and Dan Touitou. Software transactional memory.
In PODC ’95: Proceedings of the fourteenth annual ACM
symposium on Principles of distributed computing, pages
204–213, New York, NY, USA, 1995. ACM.

[18] Gerald Jay Sussman and Guy Lewis Steele, Jr. The First
Report on Scheme Revisited. Higher-Order and Symbolic
Computation, 11(4):399–404, December 1998.

[19] R. Vaughan, B. Gerkey, and A. Howard. On Device
Abstractions For Portable, Reusable Robot Code. In
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robot Systems, pages 2121–2427, 2003.

120 Scheme and Functional Programming, 2009

World With Web
A compiler from world applications to JavaScript

R. Emre Başar, Caner Derici, Çağdaş Şenol
İstanbul Bilgi University, Department of Computer Science

{reb,cderici,csenol}@cs.bilgi.edu.tr

Abstract
Our methods for interacting with computers have changed drasti-
cally over the last 10 years. As web based technologies improve,
online applications are starting to replace their offline counterparts.
In the world of online interaction, our educational tools also need
to be adapted for this environment. This paper presents WorldWith-
Web, a compiler and run-time libraries for mapping programs writ-
ten in Beginning Student Language of PLT Scheme with World
teachpack to JavaScript. This tool is intended to exploit the sharing-
enabled nature of the web to support the learning process of stu-
dents. Although it is designed as an extension to DrScheme, it is
also possible to use it in various settings to enable different meth-
ods of user interaction and collaboration.

Keywords JavaScript, web, compiler, Scheme

1. Introduction
The role of computers and World Wide Web (WWW) in our life
has gone through a series of changes through the last decade. Com-
puters used to be just a static, desktop only tool. The design of
WWW also reflected that nature by being a static source of infor-
mation. Although the WWW is designed to be a source for sharing
information [2], it constituted a producer-consumer relationship be-
tween the author and the visitor of a web site. In that scenario users
had a passive role of accessing the web, using the web browser on
their computers.

Mobile networks, wireless access and availability of powerful
mobile devices changed the way we interact with computers. This
change in the environment also triggered a change in our approach
to WWW. By the rapid growth of Web 2.0 and technologies related
to it, users dropped their role as passive consumers of information,
and became collaborators and creators of the content [11]. This
change of role is due to the fact that Web 2.0 enabled users to create
and share their content easily, without going through all the hassle
of creating and maintaining a personal web site.

While the world has changed, our teaching and development
tools mostly stayed the same. Although our tools for teaching
programming is much better than the ones we had 10 years ago,
they have not adapted to the change. One of the main drawbacks
of our current tools is that they are “offline”. We believe that in the

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

age of blogs, social networks and other types of sharing media,
writing a program that guesses the number you had in mind is
useless unless you share it with other people.

To address this need, we developed a compiler, WorldWith-
Web1, that enables users to share their creations easily. Using
WorldWithWeb it is possible to create an interactive animation
using the “Beginning Student” language of DrScheme with the
world.ss teachpack and publish it as a standalone application that
runs in the web browser. Being able to produce a self contained,
browser-based application makes it possible for the user to share it
in all types of online media.

2. WorldWithWeb
The aim of WorldWithWeb is to create a bridge between DrScheme
programming environment and the web. This way, users will be
able to share their applications easily, enabling them to be a part
of the connected world, instead of just a consumer. Using this
approach it is much more easier for users to share their creations
and get feedback from different people around the world (not just
their friends, teachers or families) and more importantly gain online
reputation.

To accomplish this goal, we need to enable the user to speak the
“lingua franca” of the web: JavaScript [1]. Although JavaScript is a
language with a fine set of features and tons of libraries for creating
online applications, it is not a perfect fit for pedagogic purposes.
A pedagogic language, as defined by Felleisen et al [5] needs to
be simple and light as far as possible. DrScheme’s “Beginning
Student” language (BSL) and other languages at the HtDP category
are designed with this purpose in mind, and they are a perfect fit for
pedagogic methodology behind HtDP.

For this purpose we created a compiler that compiles programs
written in the BSL to JavaScript. This way, a student can create
a program in the DrScheme environment, using a language that is
designed to help his/her learning process. Then he/she can auto-
matically create a web page containing the application, sharing it
over the web with the rest of the world.

2.1 A note on Beginning Student Language and World.ss
DrScheme development environment is able to restrict, or extend
a user’s access to the underlying language. This feature is called
“Languages”. One of these languages, is the “Beginning Student”
language, which is used by HtDP [4]. This language is trimmed
down to restrict the user to a nearly-pure functional subset of
Scheme without higher-order functions. Although the BSL pro-
vides only some basic utilities for writing programs, it is possible
to extend the language with libraries called teachpacks [15].

1 For source code, screenshots, demos and other information please visit:
http://vc.cs.bilgi.edu.tr/trac/worldwithweb

121

World.ss [3] is a teachpack designed for creating interactive an-
imations in a purely functional programming style. The imperative
parts of creating an animation is handled by internals of world.ss
package. This way, the student is left with a purely functional pro-
gramming interface where he/she can design and code the anima-
tion focusing on the design methodology as imposed by HtDP.

3. Related Work
The Moby Scheme Compiler [8] is an effort to make programs writ-
ten in BSL and world.ss available on mobile devices. It also con-
tains some extensions to world.ss package. Using those extensions,
it is possible for the user to create applications that exploits the ex-
tra functionality (like GPS or tilting detection) provided by those
devices, while staying within the BSL. While Moby opens up new
possibilities in front of students for creating applications that runs
on devices other than classical PC’s, it does not solve the problem
of sharing those applications with each other.

scheme2js [9] is a compiler from Scheme to JavaScript, in-
tended to provide complete interoperability between JavaScript and
Scheme. While it has similar goals with WorldWithWeb, it should
be considered as a foreign function interface between Scheme and
JavaScript. Although it is possible to use scheme2js as a tool for
implementing low level interfaces of WorldWithWeb, the complex
relations between PLT Scheme GUI libraries and underlying OS
makes it impossible to use that kind of low-level implementation
directly.

Processing.js2 is an implementation of the Processing [14] for
JavaScript. Although it presents the same API to the users, it does
not provide any tools for converting from Java to JavaScript au-
tomatically. To be able to run a Processing application with Pro-
cessing.js the user needs to re-write the entire application using
JavaScript.

O’browser, which is developed within the Ocsigen project3 is a
virtual machine for OCaml, written in JavaScript. It supports load-
ing OCaml bytecode directly into the VM without any need for
recompiling. Although it provides the advantages of a statically
typed functional programming language, users need to have pre-
vious knowledge about HTML and DOM to create applications for
the web. This disadvantage creates a barrier for the beginning stu-
dent to create applications using that framework.

4. Implementation
The design of WorldWithWeb is based on two distinct parts. One
part is the core compiler, which translates the Scheme code to Java-
Script. The second part is the runtime libraries, implemented in
pure JavaScript. This strict separation allows us to freely experi-
ment on the implementation of runtime, while keeping the compiler
as small as possible.

4.1 Compiler
Since the web provides the user with many different methods (i.e.
blogs, forums, social networking sites) for publishing the content,
our implementation also needs to be adaptable to various media.
Therefore, WorldWithWeb is designed as a library that can be used
by various frontends to create final output. This way, the user can
create new frontends that can read code from any kind of resource
and to create output that is appropriate for the destination medium.
Currently the only output format is HTML, linked with required
JavaScript libraries and user code.

The output of the compiler is a pinfo structure which is defined
as:

2 http://www.processingjs.org
3 http://www.ocsigen.org

(define-struct pinfo (code
function-mappings
tests
images))

Code field of the structure is the generated JavaScript code for
the program. The source code is contained as a string, so it can be
used directly with display or similar functions to create the main
JavaScript file.

Function mappings are provided as a bridge between BSL func-
tions and the JavaScript libraries that implements them. They
simply rename the functions available from the libraries to their
Scheme counterparts. Since the inclusion of this map might be ac-
complished using different methods in different environments, it’s
left to the backend to decide to include them or not.

The tests in DrScheme testing framework need a different evalu-
ation order. They need to be evaluated after all of the other top-level
expressions. Otherwise it becomes hard to test functions, especially
for mutually recursive cases. To satisfy this need, tests are stored
separate from the user’s code and presented as extra information to
the frontend application. This also allows the frontend to remove
the tests if the destination platform is not appropriate for running
tests.

DrScheme allows a user to embed images directly into source
code. Since there is no direct method for accomplishing this in
JavaScript, through the compilation process, embedded images are
extracted from source code, and saved as image files to the disk.
Images in source code are then replaced with a function call that
loads those images on demand. The images field of the pinfo
structure contains these names, in the order of appearance in the
source code.

4.2 Data type correspondence
One of the most important challenges when translating one lan-
guage to another is to define the data structures of the source lan-
guage in the terms of destination language. Scheme, and more gen-
erally Lisp family of languages, are especially famous in that area
because of their unorthodox nature of implementing various lan-
guage features, such as numbers, Object Oriented Programming
techniques etc... While JavaScript has some properties of functional
programming languages, like higher order functions, it also lacks
some features, like exact numbers or symbols of Scheme. There-
fore, while it is possible to create a one to one correspondence in
some data types like functions or booleans, many other data types
requires special handling.

4.2.1 Numbers
Numbers in WorldWithWeb follows the Scheme number model
closely, the numeric tower is implemented fully, including support
for big numbers. The support for exact numbers is implemented
using Matthew Crumley’s BigInteger library4.

The numeric tower is implemented using a class hierarchy that
matches the hierarchy of numbers in the numeric tower. Inexact
numbers of Scheme are double precision floating point numbers
as defined by IEEE754 [7]. Since this model exactly fits to the
JavaScript number model, JavaScript numbers are directly used for
implementing inexact numbers.

4.2.2 Symbols
Symbols are one of the most interesting data structures that differ-
entiate Lisp family of languages from others. Although a symbol is
similar to a string in other languages, unlike a string it is guaran-
teed to be unique. While in many other scenarios symbols might

4 http://silentmatt.com/biginteger/

122 Scheme and Functional Programming, 2009

be simply represented as strings, keeping the uniqueness invari-
ant is important in this case, since the identity equality depends
on that uniqueness feature. To accomplish this, symbol construc-
tors are wrapped within a function that maintains a hash table of
symbols produced so far. That way, if a requested name is already
in the symbol table, it is returned. If the symbol is not in that table,
a new symbol object is created and added to the table.

4.2.3 Characters
In many programming languages strings are just modeled as an ar-
ray of characters. JavaScript, however, follows a different approach.
In JavaScript there is no concept of a character. Instead, characters
are modeled as strings with length 1. While a pragmatic approach
might recommend to implement the same method, it is impossible
to follow this method for implementing Scheme characters.

In Scheme, strings and characters are two distinct data types.
There are also many functions that operate between these domains.
For this reason, we decided to follow the Scheme approach and
put a clear distinction between characters and strings. A character
in WorldWithWeb is represented as a simple structure, holding an
exact number, the Unicode code point of that character.

4.2.4 Structures
Structures in Scheme are simple data types to hold compound data.
In BSL, a structure definition consists of a name and a list of
fields. That definition introduces not only the structure itself but
also a constructor, field accessors and equality tester. Since BSL is
a purely functional subset of Scheme, structure definitions in BSL
do not introduce field mutators.

Structures in WorldWithWeb are modeled as objects in the Java-
Script’s prototype based object system. A structure definition intro-
duces an object which is built by the constructor function. Fields of
the structure correspond to the the object’s fields. Also field acces-
sors and equality tester are defined as ordinary functions that work
on object’s fields.

4.2.5 Images
Being able to embed images directly in source code of a program is
one of the most interesting features of DrScheme. This way, images
can be used and modified like any other value in the language.
Unfortunately JavaScript has no support for directly embedding
images in the source code5. To handle this problem in a compatible
way, images in the source code are saved as resources and they are
replaced with a call to a function which loads the image on demand.

4.3 JavaScript Libraries
The second part of WorldWithWeb is the supporting libraries, writ-
ten in pure JavaScript. These libraries imitate the primitive func-
tions found in BSL and the world.ss teachpack. The libraries are
designed to be exact imitations of their Scheme counterparts. For
this reason, they consume the same number of parameters, produce
same types of values as their Scheme counterparts and raise the
same kinds of error messages.

4.3.1 Beginning Student Language
BSL contains the most basic functions for users to create applica-
tions. While its contents are limited to a subset of Scheme, it is big
enough to let the users create useful programs. It mainly consists of
number and string operators.

The BSL functions are implemented as ordinary JavaScript
functions, using the datatypes mentioned above. The naming of

5 Actually, images can be embedded in data urls with base64 encoding, but
this feature is not available in all browsers.

the functions follows the naming scheme used by Moby Scheme
Compiler.

4.3.2 Testing
There are two motivations behind the testing implementation of
WorldWithWeb. First motivation is that testing is a crucial part of
programming education. Getting used to writing proper test cases is
important and the user should get feedback for his/her tests. While
the user can test his/her program in DrScheme environment, it is
also an extra safety measure to see that his/her tests pass on the
web interface too.

Secondly, all projects need testing. WorldWithWeb is no ex-
ception. All test cases for WorldWithWeb libraries are written in
Scheme and then compiled to JavaScript. This way we can be sure
that as long as the tests pass in both environments our libraries are
fully compatible with their Scheme counterparts.

The Scheme testing library provides three testing primitives.
Two of them, check-expect and check-within are no different
than any other function call. They are directly implemented as func-
tions. On the other hand check-error, which checks if a given ex-
pression produces a certain error message cannot be implemented
directly.

The error mechanism in JavaScript works using exceptions and
in the evaluation order of JavaScript it is not possible to catch
exceptions that happen while the arguments of a function are being
evaluated. To handle this case, WorldWithWeb compiler wraps the
expression that is expected to raise the error in an anonymous
function, effectively delaying the evaluation. Later, when the test
is evaluated the function is called and the expected exception is
catched by ordinary exception handlers, and tested against the
expected value.

4.3.3 Images
The world.ss teachpack consists of two parts. One part is the im-
age.ss library which concentrates on creation and manipulation of
images and shapes in various ways. The other part is the world.ss
which manages the events from the outside world and controls the
flow of world state between handlers for those events.

The images library is an imitation of image.ss teachpack found
in DrScheme and used by the world.ss package. The library pro-
vides all of the functions that enables user to create static images
and compose them in various ways. The JavaScript implementation
also provides same primitive shapes and covers most of the image
manipulation functions.

Images in WorldWithWeb are modeled as objects. All image
objects provide a set of methods that makes it possible to use
them in a generic manner. These methods include width & height
calculations, pinhole alignment and a method called draw.

The Scheme implementation of images relies on the underlying
drawing primitives, provided by the GUI [6] framework. The im-
ages in that implementation are created as bitmap instances. This
method allows the images library to use the methods of bitmap ob-
jects for all kinds of width/height calculations. Unfortunately, this
approach is not possible in WorldWithWeb since it will require the
implementation of a GUI style drawing system in JavaScript. Width
and height calculations in WorldWithWeb is done directly by im-
ages themselves. For most of the primitive shapes, that approach
works directly by applying appropriate formula for the shape. It is
also possible to calculate this data for composite images. Although
most shapes are implemented in a straightforward way, some of
them (like triangles) do not produce the same result with their
Scheme counterparts. This approach also fails on calculating the
width and height of text objects.

The main challenge about images is the drawing of images on an
HTML canvas element. The canvas element is a simple container,

Scheme and Functional Programming, 2009 123

for a drawing context object. The drawing context provides simple
drawing primitives like lines, bezier curves etc... The drawing of
a world scene is accomplished by passing this drawing context
through all the image objects in the current scene.

All image objects are designed to have a method called draw
which has three parameters. The first parameter is a drawing con-
text, provided by a canvas element. The second and third param-
eters are the coordinates that the image object should draw it-
self. While ordinary objects just draw themselves in the drawing
context, overlays, scenes and other composite objects manage the
drawing of their sub-objects on the drawing context, passing the
context from one element to another in the correct order.

4.3.4 World
As we mentioned in the previous topic, the world.ss library pro-
vides the abstraction mechanisms for the events coming from out-
side world. Although this is the main role of world.ss, it also pro-
vides some extra drawing primitives for creating “scenes”.

In world.ss terminology, a scene is an image with a pinhole
at 0,0 coordinates. For this reason, we implemented scenes as
an extension of ordinary drawing primitives, provided by images
library.

The main role of the world.ss is handling events. This is im-
plemented in terms of timers and DOM events [13]. Mainly all
handlers are defined as wrappers around the user-defined handler
functions. For each event, the world is updated by the results of the
handler function, and redrawn.

There are mainly three kinds of events in world.ss model. The
first kind of event is the tick event, which is independent of the user
interaction. It is the simplest event, which calls the handler function
in each time tick. This handler is implemented as a JavaScript
timer. JavaScript provides a setTimeout function which calls the
provided handler in given periods.

The second kind of event is the user input. In plain world.ss,
the only input user can provide is by using keyboard and mouse.
The input from those devices are handled by key and mouse
event handlers. In JavaScript, it is possible to access these events
using event listeners. Each DOM object provides an interface,
addEventListener, which allows the user to hook into the events
occurring on that element. Using this interface, handler functions
can access the details of the event (character code, mouse coordi-
nates, modifier keys etc...). The handler wrappers for mouse and
keyboard events get the raw JavaScript events and provide that in-
formation into user’s handler functions in a format that imitates the
Scheme interface.

The last event type is the redraw events. Redraw of the scene is
actually not a real event but it is triggered by all kinds of handler
events for the scene to represent the current state of the world in the
window. Redraw events are currently invoked by handler functions,
in a manual fashion. Each handler function invokes the redraw
handler after changing the world.

Another handler, which is not tied to an event is stop-when.
The stop-when handler decides when the animation should stop.
When the condition checked by the handler is satisfied, all other
event handling stops, effectively stopping the animation.

5. Possible Applications
While WorldWithWeb is mainly designed to be used within DrScheme
programming environment, it is possible to use it as a library to pro-
vide different kinds of functionality from all types of applications.
This way user might be provided with a richer environment which
is adapted to his/her development environment. While it is possible
to use the library to integrate user’s application to various web ser-
vices as discussed before, it might also be used in many different
setups providing different services.

5.1 Interactive Environment
As Papert [12] noted in 1980’s, programming plays an important
role in a child’s learning process. Unfortunately, many of the stu-
dents around the world have no access to a personal computer of
their own and need to use public computers instead. Because of
the locked down nature of those public access computers, most of
the time, the student will not have access to DrScheme environ-
ment. For many types of software, this problem is solved by rich
Internet applications. This way, users have the opportunity to ac-
cess their spreadsheets, instant messaging systems and all kinds of
documents from anywhere in the world.

Following this idea of online applications, it is possible to create
an online programming editor that will provide a simple editing
environment for Scheme code. The user can write his/her code in
that environment, and then send the code to the server by clicking
the “Run” button on the web page. The server will compile the
application to JavaScript and send it as a response to the user’s web
browser, to be evaluated. That way, the user can see the result of
his/her code directly in the web browser without the need for any
other tool.

5.2 Gadget-like applications
As we mentioned earlier, sharing lies in the heart of web. While
there are many different methods for sharing different kinds of con-
tent, social networking sites became hubs where the sharing gets
centralized. One of the most important feature of social network-
ing sites are the “gadgets” they present to their users. A gadget is
a small application, created using JavaScript and HTML. With ini-
tiatives like OpenSocial [10], it is possible to create a gadget and
share it with other people across different social networking sites.

Since gadgets are just composed of HTML and JavaScript em-
bedded inside a meta data container, it is possible to use World-
WithWeb to create these gadgets automatically. All that’s required
is to create a frontend that generates appropriate XML structure
from the generated code.

Enabling this kind of sharing might be a real boost for the user
motivation, since the user’s application directly becomes a part of
a network that is built especially for sharing purposes.

6. Conclusion & Future Work
World.ss is a library that provides abstractions that enables users to
create complicated animations and simulations without going into
the imperative roots of creating an animation. WorldWithWeb takes
this one step forward, providing the user to share his/her creation
on the web without worrying about the underlying protocols or
languages. Although it does provide the user with everything he/she
needs to create an interactive animation, there is still room for
improvement.

6.1 Universe.ss
Universe.ss is a teachpack extending world.ss by enabling the
user to create multiuser client/server applications like multiplayer
games while staying in a purely functional programming environ-
ment. The core concept in universe.ss is the “message”. A message
is a simple packet of information contained in an S-Expression
[15]. The client environment communicates with the server, and
other clients using messages.

The application model proposed by universe.ss fits perfectly
into the development model of Web 2.0 applications. A Web 2.0
application communicates with the server and other clients using
simple messages encoded using various methods. One of these en-
coding methods is the JavaScript Object Notation (JSON) which
makes it possible to encode any kind of JavaScript data in a simple
text only format. Most Web 2.0 applications work by passing Java-

124 Scheme and Functional Programming, 2009

Script objects encoded in JSON format between client and server.
The server application distributes this data to other clients using
polling techniques.

This correspondence in methodology makes it possible to ex-
tend WorldWithWeb to cover universe.ss. The implementation of
single user applications in universe.ss is trivial, since that part of the
universe.ss is nearly the same with world.ss. The main difference
of universe.ss shows itself in multi-user applications. To implement
multi-user applications, the messages need to be encapsulated and
sent/received using XMLHttpRequest’s [16].

The implementation of the server side is a much more interest-
ing problem. That application can be modeled as a proxy in front
of the universe.ss server. The proxy can capture the JSON encoded
objects, create the corresponding Scheme object, and pass it to the
actual universe.ss server. Then the inverse of this method can be
used to encode objects from universe.ss server going to the clients.
The most important advantage of this method for implementing the
server side is that the server application can be used as-is without
any modifications.

6.2 Better Scheme Semantics
As noted by Loitsch and Serrano, compiling Scheme to JavaScript
while keeping the Scheme semantics intact is not a simple process.
The lack of first class continuations and similar techniques makes
it impossible to make a direct translation between two languages.

Since WorldWithWeb just focuses on a subset of Scheme lan-
guage, some of these problems (like first class continuations) disap-
pear by themselves. However, some other things like exact numbers
and proper tail calls remains. As we mentioned earlier, WorldWith-
Web already implements exact numbers using a fractional numbers
library.

Proper tail calls are currently not implemented. While this is
not a serious problem for small applications, as the applications get
more complicated, it is possible to hit a memory barrier. We are
currently working on various methods for implementing tail calls
in JavaScript.

6.3 Other Language Levels
While compiling BSL programs might motivate the student to a
certain level, the tools should be available to him/her through the
learning process. This requires adding support for other language
levels to the compiler.

Although it is rather simple process to add support for language
levels like “BSL with List Abbreviations” or “Intermediate Stu-
dent” by just extending the library functions, the addition of “Inter-
mediate Student with Lambda” language will require the addition
of higher order functions and anonymous functions. This addition,
probably will not be so hard, considering that JavaScript already
has support for higher order functions and anonymous functions.

Adding the “Advanced Student” language will probably be the
hardest part, since that language level introduces mutation. Intro-
duction of mutation into the language creates two important re-
quirements for the compiler: Sequencing and function call seman-
tics.

In purely functional languages the evaluation order of the ex-
pressions do not effect the result of the computation. Breaking pu-
rity by introducing mutation requires that expressions are evalu-
ated in correct order. When values can be mutated, the programmer
should be able to know beforehand when the mutation will happen
to be able to reason about the program. For this reason compiling
a language with mutation should not effect the evaluation order.
Since JavaScript is not designed to be a purely functional language,
it already contains proper sequencing constructs. The only thing to
be done is to make sure that JavaScript sequencing semantics are in
correspondence with the Scheme sequencing semantics.

The second problem is preserving the function call semantics. In
the presence of mutation, the results from functions might depend
on the function call strategy used. To make sure that the JavaScript
version of the program produces the same results with Scheme
version, function calls might require special treatment.

Acknowledgments
We would like to acknowledge Chris Stephenson, M. Fatih Köksal
and E. Pınar Hacıbeyoğlu for their support through the develop-
ment process of WorldWithWeb and the preparation of this paper.

References
[1] ECMAScript Language Specification. 1999.
[2] Tim Berners-Lee. Information management: A proposal. CERN,

March, 1989.
[3] Matthias Felleisen, Robert B. Findler, Kathi Fisler, Matthew Flatt,

and Shriram Krishnamurthi. How to design worlds, 2008.
[4] Matthias Felleisen, Robert B. Findler, Matthew Flatt, and Shriram

Krishnamurthi. How to Design Programs. MIT Press Cambridge,
Mass, 2001.

[5] Matthias Felleisen, Robert B. Findler, Matthew Flatt, and Shriram
Krishnamurthi. Structure and interpretation of the computer science
curriculum. Journal of Functional Programming, 2004.

[6] Matthew Flatt, Robert B. Findler, and John Clements. GUI: PLT
graphics toolkit. Reference Manual PLT-TR2009-gui-v4.1.5, PLT
Scheme Inc., March 2009.

[7] Matthew Flatt and PLT Scheme. Reference: PLT scheme. Reference
Manual PLT-TR2009-reference-v4.1.5, PLT Scheme Inc., March
2009.

[8] Shriram Krishnamurthi. The moby scheme compiler for smartphones.
In Proceedings of the International Lisp Conference, 2009.

[9] Florian Loitsch and Manuel Serrano. Compiling Scheme to
JavaScript.

[10] J. Mitchell-Wong, R. Kowalczyk, A. Roshelova, B. Joy, and H. Tsai.
Opensocial: From social networks to social ecosystem. pages 361–
366, Feb. 2007.

[11] Tim OReilly. What is web 2.0: Design patterns and business models
for the next generation of software.

[12] Seymour Papert. Redefining childhood: The computer presence as an
experiment in developmental psychology. In Proceedings of the 8th
World Computer Congress: IFIP Congress, 1980.

[13] Tom Pixley. Document object model (DOM) level 2 events
specification. W3C Recommendation, November, 2000.

[14] Casey Reas, Ben Fry, and John Maeda. Processing: A Programming
Handbook for Visual Designers and Artists. MIT Press Cambridge,
Mass, 2007.

[15] PLT Scheme. Teachpacks. Reference Manual PLT-TR2009-
teachpack-v4.1.5, PLT Scheme Inc., March 2009.

[16] Anne van Kesteren and Dean Jackson. The XMLHttpRequest object.
World Wide Web Consortium, Working Draft WD-XMLHttpRequest-
20070618, 2007.

Scheme and Functional Programming, 2009 125

Peter J. Landin (1930–2009)

Olivier Danvy
Department of Computer Science,

Aarhus University
Aabogade 34, DK-8200 Aarhus N, Denmark

danvy@cs.au.dk

Abstract
This note is a prelude to a forthcoming special issue of
HOSC dedicated to Peter Landin’s memory.

—

One of the founding fathers of everything lambda in pro-
gramming languages passed away in June 2009: Peter J.
Landin.

Peter Landin spent the last years of his life as Professor
Emeritus at Queen Mary, where his colleagues included Ed-
mund Robinson and Peter O’Hearn. Over the last decade, he
served in the advisory board of HOSC and thus received a
complimentary copy of each issue. HOSC published two of
his articles: a tribute to Christopher Strachey [21] in 2000
and a reprint of his 1965 technical note “A generalization of
jumps and labels” [20] in 1998, for which Hayo Thielecke
wrote an introduction [30]. In the editorial of our 1998 is-
sue [11], Carolyn Talcott and I presented this reprint as fol-
lows:

This paper describes a real conceptual discovery,
namely the idea to make control facilities first-class
entities in a programming language, through the “J
operator.” Its exposition is typical of the simplicity,
directness, clarity and honesty of Landin’s writing
that makes his articles such a pleasure to read.

This spring, for the last time, I sent him a copy of a scien-
tific compliment: a joint re-visitation with Ken Shan and Ian
Zerny of his direct-style embedding of Algol 60 into applica-
tive expressions with the J operator [15]. There, we retarget
his embedding to the Rhino implementation of JavaScript
with continuation objects. Indeed, whereas call/cc captures
the current continuation, the J operator captures the contin-

Proceedings of the 2009 Scheme and Functional Programming Workshop
California Polytechnic State University Technical Report CPSLO-CSC-09-03

uation of the caller of the current method [7]. This feature
fitted Landin’s embedding then and it fits a JavaScript im-
plementation with a local stack for each method now [3].
Playfully, the title of our re-visitation is thus “J is for
JavaScript” [10].

—

In 2004, I paid Peter Landin a visit at the occasion of
Josh Berdine’s PhD defense [2] and found him in his of-
fice, patiently helping an undergraduate student. In turn, I
patiently waited for him to be done with the student before
presenting him my rational deconstruction of his SECD ma-
chine [5]. I then showed him how the SECD machine could
be put into defunctionalized form [9, 25] and could then be
refunctionalized [8] into a continuation-passing evaluator à
la Lockwood Morris [22]. I thus enthusiastically concluded
how much the SECD machine made sense, and that even
though he might not have discovered continuation-passing
style (see Appendix), defunctionalization and refunctional-
ization provided a concrete argument why his name should
be added to the list of the discoverers of continuations [26].
Throughout, he was as patient with me as with the under-
graduate student, and in the end he smiled, his eyes sparkled
amusedly, and then he made some incredibly modest com-
ments to the effect that he had been lucky.

Peter Landin was indeed so modest that in 1998, he
did not attend the MFPS XIV session held in his honor at
Queen Mary,1 eliciting Dana Scott’s quip as to whether Pe-
ter Landin was the Bourbaki of Computer Science. He did,
however, get to read hardcopies of the slides displayed at his
session.

—

I initially got in touch with Peter Landin in 1996 by e-
mail and by phone and we met for the first time in January
1997 in Paris, at the occasion of the Second ACM SIG-
PLAN Workshop on Continuations [4], which I was chair-
ing and where he gave a keynote speech. For the proceed-
ings, he wrote the masterfully idiosyncratic “Histories of

1 <http://www.dcs.qmul.ac.uk/~edmundr/mfps/>

126

Discoveries of Continuations: Belles-Lettres with Equivocal
Tenses” [19].2

After his keynote speech at CW’97, he handed out copies
of some of his old research reports [16, 17]. There naturally
was a stampede, and to Olin Shivers who asked his copies
to be autographed he said “I am not the Beatles,” and then
signed them.

When introducing him before his keynote speech, I
pointed out that independently of all his accomplishments,
he was a rare breed of computer scientist with a control oper-
ator as his middle name (which is “John” and is abbreviated
“J” in his publications). He flashed a look at me that to this
day makes me wonder whether it was such a good idea to
mention this coincidence at all.

My favorite moment with Peter Landin occurred when we
met: he was arriving from London to attend CW’97, I picked
him up at the train station, and together with John Reynolds
and Andrzej Filinski, we sat at the terrace of a French café.
I took the opportunity of a pause in the conversation to ven-
ture the question as to whether in their mind, the evaluation
order of the meta-language of denotational semantics was
call by value or call by name. Peter and John immediately,
and simultaneously, answered “call by value of course” (for
Peter) and “call by name of course” (for John). For a sec-
ond of eternity, they looked at each other. Then it was like
they were mentally telling each other “let’s not have this dis-
cussion again” and the universe resumed its course. The rest
of the evening was warm and pleasant, the following day
was as wonderful as each continuation workshop somehow
manages to be, and eventually I took him back to the train
station.

—

What happened before is history: his impression that
computer science was turning “too theoretical” for him, his
quiet move away from the programming-language limelight,
and his ascension to programming-language legend. Peter
Landin was indeed gifted with an uncanny, almost prophetic,
computational sense. To (boldly) quote from the introduction
of my rational deconstruction of his SECD machine [5]:

Forty years ago, Peter Landin wrote a profoundly in-
fluential article, “The Mechanical Evaluation of Ex-
pressions” [14], where, in retrospect, he outlined a
substantial part of the functional-programming re-
search programme for the following decades. This
visionary article stands out for advocating the use of
the λ-calculus as a meta-language and for introducing
the first abstract machine for the λ-calculus (i.e., in
Landin’s terms, applicative expressions), the SECD
machine. However, and in addition, it also intro-
duces the notions of ‘syntactic sugar’ over a core pro-
gramming language; of ‘closure’ to represent func-

2 Including “So these continuations have continuations.” which beautifully
anticipates the CPS hierarchy [6].

tional values; of circularity to implement recursion; of
thunks to delay computations; of delayed evaluation;
of partial evaluation; of disentangling nested applica-
tions into where-expressions at preprocessing time; of
what has since been called de Bruijn indices; of shar-
ing; of what has since been called graph reduction; of
call by need; of what has since been called strictness
analysis; and of domain-specific languages—all con-
cepts that are ubiquitous in programming languages
today.

And did I mention that together with his embedding of
Algol 60 into applicative expressions, his 700 article [18] is
generally recognized as the origin of domain-specific lan-
guages today?

On so many fundamental and tasteful ways Peter Landin
was unerringly right. He has now passed away, but his writ-
ings stay and his discoveries, his inventions, and his middle
name live on.

—

Appendix: As John Reynolds pointed out in our columns
[26], Peter Landin did not discover continuation-passing
style—instead, he invented control operators and first-class
continuations (see Figure).

The left vertical arrow is a tour de force due to Adri-
aan van Wijngaarden [31] and James Morris [23]. The top
horizontal arrow is due to Peter Landin [15]. (“Applica-
tive expressions” is Peter Landin’s words for “λ-terms.”)
The diagonal arrow is variously due to Christopher Stra-
chey and Christopher P. Wadsworth [29] and to Kamal Ab-
dali [1], and its unstaged version is due to Lockwood Mor-
ris in the form of a definitional interpreter in continuation-
passing style [22,25]. In the pure case (i.e., without the J op-
erator), the right vertical arrow is due to Michael Fischer [12]
and has been formalized by Gordon Plotkin [24] and put to
compiler use by Guy Steele [28], who extended it to the im-
pure case and introduced the acronym “CPS” and the term
“CPS transformation.” The bottom horizontal arrow is obvi-
ous. In Landin’s direct-style embedding, label declarations
are mapped to an occurrence of the J operator that gives rise
to a ‘program closure’ (known today as a “first-class con-
tinuation” [13]), and jumps to a label are mapped to an ap-
plication of the program closure lexically associated to this
label. Peter Landin used to joke that he had smuggled the J
operator into a galley proof [15].

“In those days [the 1960’s],
many successful projects started out

as graffitis on a beer mat
in a very, very smoky pub.”

Peter J. Landin, 2004

Acknowledgments: This note benefited from Irène Danvy,
Julia Lawall, Karoline Malmkjær, and Ian Zerny’s sensible
proof-reading.

Scheme and Functional Programming, 2009 127

Algol programs
in direct style

direct-style
embedding

//

CPS
embedding

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

CPS
transformation

���
�
�
�
�
�
�
�
�
�

applicative expressions
in direct style with J

CPS
transformation

���
�
�
�
�
�
�
�
�
�

Algol programs
in CPS

direct-style
embedding

// applicative expressions
in CPS

References
[1] S. Kamal Abdali. A lambda-calculus model of programming

languages, part II: Jumps and procedures. Computer
Languages, 1(4):303–320, 1976.

[2] Josh Berdine. Linear and Affine Typing of Continuation-
Passing Style. PhD thesis, Queen Mary, University of
London, 2004.

[3] John Clements, Ayswarya Sundaram, and David Herman.
Implementing continuation marks in JavaScript. In Will
Clinger, editor, Proceedings of the 2008 ACM SIGPLAN
Workshop on Scheme and Functional Programming, pages
1–9, Victoria, British Columbia, September 2008.

[4] Olivier Danvy, editor. Proceedings of the Second ACM
SIGPLAN Workshop on Continuations (CW’97), Technical
report BRICS NS-96-13, Aarhus University, Paris, France,
January 1997.

[5] Olivier Danvy. A rational deconstruction of Landin’s SECD
machine. In Clemens Grelck, Frank Huch, Greg J. Michael-
son, and Phil Trinder, editors, Implementation and Applica-
tion of Functional Languages, 16th International Workshop,
IFL’04, number 3474 in Lecture Notes in Computer Science,
pages 52–71, Lübeck, Germany, September 2004. Springer-
Verlag. Recipient of the 2004 Peter Landin prize. Extended
version available as the research report BRICS RS-03-33.

[6] Olivier Danvy and Andrzej Filinski. Abstracting control.
In Mitchell Wand, editor, Proceedings of the 1990 ACM
Conference on Lisp and Functional Programming, pages
151–160, Nice, France, June 1990. ACM Press.

[7] Olivier Danvy and Kevin Millikin. A rational deconstruction
of Landin’s SECD machine with the J operator. Logical
Methods in Computer Science, 4(4:12):1–67, November
2008.

[8] Olivier Danvy and Kevin Millikin. Refunctionalization at
work. Science of Computer Programming, 74(8):534–549,
2009. Extended version available as the research report
BRICS RS-08-04.

[9] Olivier Danvy and Lasse R. Nielsen. Defunctionalization
at work. In Harald Søndergaard, editor, Proceedings of the
Third International ACM SIGPLAN Conference on Principles

and Practice of Declarative Programming (PPDP’01),
pages 162–174, Firenze, Italy, September 2001. ACM Press.
Extended version available as the research report BRICS
RS-01-23.

[10] Olivier Danvy, Chung-chieh Shan, and Ian Zerny. J is for
Javascript: A direct-style correspondence between Algol-like
languages and Javascript using first-class continuations. In
Walid Taha, editor, Domain-Specific Languages, IFIP TC
2 Working Conference, DSL 2009, number 5658 in Lecture
Notes in Computer Science, pages 1–19, Oxford, UK, July
2009. IFIP, Springer.

[11] Olivier Danvy and Carolyn L. Talcott, editors. Special Issue
on the Second ACM Workshop on Continuations (CW 1997),
Part I, volume 11, number 2 of Higher-Order and Symbolic
Computation, 1998.

[12] Michael J. Fischer. Lambda-calculus schemata. LISP and
Symbolic Computation, 6(3/4):259–288, 1993. Available
at <http://www.brics.dk/~hosc/vol06/03-fischer.
html>. A preliminary version was presented at the ACM
Conference on Proving Assertions about Programs, SIG-
PLAN Notices, Vol. 7, No. 1, January 1972.

[13] Daniel P. Friedman and Christopher T. Haynes. Constraining
control. In Mary S. Van Deusen and Zvi Galil, editors,
Proceedings of the Twelfth Annual ACM Symposium on
Principles of Programming Languages, pages 245–254, New
Orleans, Louisiana, January 1985. ACM Press.

[14] Peter J. Landin. The mechanical evaluation of expressions.
The Computer Journal, 6(4):308–320, 1964.

[15] Peter J. Landin. A correspondence between Algol 60 and
Church’s lambda notation, Parts 1 and 2. Communications of
the ACM, 8:89–101 and 158–165, 1965.

[16] Peter J. Landin. A generalization of jumps and labels.
Research report, UNIVAC Systems Programming Research,
1965. Reprinted in Higher-Order and Symbolic Computation
11(2):125–143, 1998, with a foreword [30].

[17] Peter J. Landin. Getting rid of labels. Research report,
UNIVAC Systems Programming, July 1965.

[18] Peter J. Landin. The next 700 programming languages.
Communications of the ACM, 9(3):157–166, 1966.

128 Scheme and Functional Programming, 2009

[19] Peter J. Landin. Histories of discoveries of continuations:
Belles-lettres with equivocal tenses. In Danvy [4], pages
1:1–9.

[20] Peter J. Landin. A generalization of jumps and labels.
Higher-Order and Symbolic Computation, 11(2):125–143,
1998. Reprinted from a technical report, UNIVAC Systems
Programming Research (1965), with a foreword [30].

[21] Peter J. Landin. My years with Strachey. Higher-Order and
Symbolic Computation, 13(1/2):75–76, 2000.

[22] F. Lockwood Morris. The next 700 formal language
descriptions. Lisp and Symbolic Computation, 6(3/4):249–
258, 1993. Reprinted from a manuscript dated 1970.

[23] James H. Morris Jr. A bonus from van Wijngaarden’s device.
Communications of the ACM, 15(8):773, August 1972.

[24] Gordon D. Plotkin. Call-by-name, call-by-value and the
λ-calculus. Theoretical Computer Science, 1:125–159, 1975.

[25] John C. Reynolds. Definitional interpreters for higher-
order programming languages. In Proceedings of 25th ACM
National Conference, pages 717–740, Boston, Massachusetts,
1972. Reprinted in Higher-Order and Symbolic Computation
11(4):363-397, 1998, with a foreword [27].

[26] John C. Reynolds. The discoveries of continuations. Lisp
and Symbolic Computation, 6(3/4):233–247, 1993.

[27] John C. Reynolds. Definitional interpreters revisited. Higher-
Order and Symbolic Computation, 11(4):355–361, 1998.

[28] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s
thesis, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, Massachusetts, May
1978. Technical report AI-TR-474.

[29] Christopher Strachey and Christopher P. Wadsworth. Contin-
uations: A mathematical semantics for handling full jumps.
Technical Monograph PRG-11, Oxford University Com-
puting Laboratory, Programming Research Group, Oxford,
England, 1974. Reprinted in Higher-Order and Symbolic
Computation 13(1/2):135–152, 2000, with a foreword [32].

[30] Hayo Thielecke. An introduction to Landin’s “A general-
ization of jumps and labels”. Higher-Order and Symbolic
Computation, 11(2):117–124, 1998.

[31] Adriaan van Wijngaarden. Recursive definition of syntax
and semantics. In T. B. Steel, Jr., editor, Formal Language
Description Languages for Computer Programming, pages
13–24. North-Holland, 1966.

[32] Christopher P. Wadsworth. Continuations revisited. Higher-
Order and Symbolic Computation, 13(1/2):131–133, 2000.

Scheme and Functional Programming, 2009 129

