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Abstract
MzScheme’s continuation marks provide a flexible mechanism for
implementing a number of useful language features and tools. We
demonstrate the simplicity and utility of continuation marks by
adapting them for JavaScript as frame-based stack marks using the
Rhino implementation, showing a simple model of their behavior,
and using them to build a toy debugger.

Along the way, we discover a few interesting things. First, it
requires some thinking—but not much code—to add continuation
marks to JavaScript. Second, coupling tail-calling with the “re-
turn” of statement-based languages leads to some interesting prob-
lems in formulating a semantics. Third, building a debugger based
on continuation marks highlights (by its absence) the elegance of
Scheme’s simple syntax and hygienic macro system.

1. Introduction
Many languages and language tools require information about the
shape and content of a program’s dynamic context. Scheme con-
tains several of these: dynamic-wind, with-output-to-file,
and exceptions are part of the standard (Sperber et al. 2007), and
many implementations extend this set with derived features such
as fluid-let and parameterize. Language tools such as debug-
gers and profilers likewise depend on information about the dy-
namic context.

Earlier work (Flatt et al. 2007; Clements 2005) suggests that
continuation marks provide a portable and high-level basis for the
storage and retrieval of such dynamic information in a way that
respects tail-calling.

Continuation marks allow programmers to create dynamic bind-
ings whose behavior exposes the tail-calling nature of the under-
lying language. This enables the development of debugging and
profiling tools that can observe tail-calling and also the implemen-
tation of existing features (e.g., dynamic-wind) in a way that has
asymptotically better memory behavior in some cases.

No other languages currently implement continuation marks. In
order to determine whether continuation marks are easy to imple-
ment and applicable to a broad range of languages, we chose to
adapt them to the Rhino implementation of JavaScript, a language
that supports closures and continuations and is designed to be prop-
erly tail-calling, but that is otherwise fairly different; it is statement-
based, it makes frequent idiomatic use of return, and its basic unit
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of dynamic organization is the call frame. These complicate the ad-
dition of continuation marks to such languages.

This paper introduces stack marks, a variation of MzScheme’s
continuation marks designed for languages like JavaScript, to solve
these problems. Like MzScheme’s continuation marks, stack marks
allow programmers, language implementers, and IDE designers
alike to build tools that observe the computational behavior of
programs without interfering with proper tail calling.

Stack marks enable a large range of language features that could
otherwise be difficult to implement without interfering with tail
calls. Their addition to languages like JavaScript thus paves the way
for the inclusion of proper tail calls to the language specification.

We present a more detailed intuition for stack marks in section
2. We build a small model for the computational core of JavaScript
in section 3. We describe the addition of stack marks to Mozilla’s
Rhino implementation of JavaScript in section 4, and describe a
debugger built on stack marks in section 5.

Following this, we explore additional related features and tools,
including stack mark combination, which turns out not to change
the expressiveness of the language (section 6), dynamic binding
(section 7), a slightly unusual model for continuations (section 8),
a way to implement exceptions (section 9), and stack inspection
(section 10).

2. Stack Marks
Stack marks are designed to allow programs to observe their own
contexts.

One way to achieve this is to simply add a primitive function
that returns a value that represents information about the dynamic
context. This is a problematic approach, for two reasons. Firstly, it
requires a language definition that explicitly describes the features
of the context that this primitive function returns—a StackFrame
object, for instance. This makes changing the language difficult.
Secondly, it exposes aspects of the evaluator that may prevent many
optimizations.

The alternative chosen by MzScheme is to allow programs to
explicitly associate values with dynamic context and later retrieve
them in such a way that they can deduce certain aspects of their
own evaluation.

For JavaScript, unlike MzScheme, the natural granularity of
such a mark is the procedure activation, or stack frame. The dy-
namic evaluation of a JavaScript program is defined with respect
to stack frames, and programmers are comfortable thinking of their
dynamic context as a chain of stack frames.

We therefore introduce the idea of “stack marks,” a mechanism
for attaching a mark to a stack frame, and retrieving all marks that
are associated with still-living stack frames. Since only one set of
marks is associated with a stack frame, the mark-storing primitive
is a non-local operation, and cannot be modeled as it is in our earlier
work on continuation marks, as simply another kind of expression
whose presence in the context can be detected by a primitive.



M = n | x | [M, . . . ] | M ; M ; . . . | if0 (M) {M } else {M }

| function(x, . . . ) {M } | M(M, . . . ) | op(M, . . . )

| tail M(M, . . . ) | return M | sf T {M }

| setmark(M, M) | getmarks(M)

V = n | [V, . . . ] | function(x, . . . ) {M }

F = [V, . . . , F, M, . . .] | F ; M ; . . . | if0 (F) {M } else {M }

| F(M, . . . ) | V (V, . . . , F, M, . . . ) | op(V, . . . , F, M, . . . )

| tail F(M, . . . ) | tail V (V, . . . , F, M, . . . )

| return F | setmark(F, M) | setmark(V, F) | getmarks(F)

|[ ]
E = [V, . . . , E, M, . . . ] | . . . | sf T {E }

where

T ∈ Mark Tables = (V/V, . . .)

x ∈ Variables

op ∈ PrimOps

δ ∈ op × 〈V, . . .〉 →p V

Program States = sf T {M } | V | error

Figure 1. Values, Expressions and Evaluation Contexts for a
JavaScript Subset that Supports Stack Marks

Properly tail-calling languages require further refinement to this
model. Tail-calling languages guarantee that runtime systems do
not needlessly waste memory when one function calls another in
tail position—that is, in a position whose result will immediately
be the result of the calling function. (Clinger 1998; Sperber et al.
2007). This enables programmers to equate loops and recursive
procedures, simplifying the language. In a language that is not
properly tail-calling, obtaining good memory behavior often re-
quires an awkward rewriting to ensure that all traversals take the
form of loops.

In many tail-recursive language implementations, function calls
made in tail position reuse the stack frame of the caller. What
should happen to the marks associated with these frames? When
using stack marks to build debuggers and security inspection tools,
it is vital not to discard this information. The solution of languages
like Java is to disable proper tail-calling in the presence of such
language features.

A better solution is to decouple the lifetime of the mark from
the lifetime of the stack frame by placing it, conceptually, at the
boundary between two stack frames. Stack marks may be overwrit-
ten by marks placed by tail calls, but they are not discarded by a
tail call that does not place marks.

3. Semantics of Stack Marks
Figures 1 and 2 define the syntax and evaluation rules of our
language.

Our model adopts JavaScript syntax, while being as simple as
possible. Its constants include only numbers, arrays, and functions.
It includes sequences (of expressions), and if0.

To simplify the model, we choose not to distinguish statements
and expressions. However, by including a sequencing form and
an explicit return, we believe that our language is a plausible
superset of a simple JavaScript model, in the sense that we could
design a set of static restrictions over the expression language

to ensure, for instance, that return occurs only in “statement”
positions, etc.

Like most statement-based languages, JavaScript makes heavy
use of return. In order to model return in our semantics, we
must augment our contexts with information about procedure call
boundaries, so that the return can discard the right fragment of
the context. In our model, this boundary is denoted by the sf
expression.1

Furthermore, modeling return requires a bit of thought. If
the return discards its local context and the sf boundary before
evaluating its argument, then a nested return could return from
a function that it is not lexically a part of. Waiting to discard
the local context until after the return value is evaluated would
destroy proper tail-calling behavior. Finally, removing the context
but leaving the sf would cause nested calls to pile up sfs, leading
to a slower-growing but still non-tail-calling implementation.

To solve this problem, we introduce a tail-calling return form,
tail, with a syntactic restriction and a special reduction form.
The syntactic restriction guarantees that the argument can only
be a function call; the special reduction rule re-uses the local sf
boundary in the new call.

As an aside, the additional semantic hardware required to model
return makes it clearer to us why traditional languages employ the
“allocate-on-entry” philosophy that looks so pointless in Clinger’s
explicit frame-allocation model (Clinger 1998).

We do not expect that programmers should be required to de-
duce which procedure calls should be labeled as tail expressions.
All procedure calls as arguments to return should be wrapped as
tail expressions, and figure 3 shows that this is simple. The judg-
ment C ` M ↪→ M ′ inserts annotations in term M , producing
a new term M ′, in a context C ∈ {TAIL, NON-TAIL} indicating
whether M occurs in tail position. Note that return tail M is
equivalent to tailM , but that automatically removing the return
would complicate the transformation.

Each stack frame (sf) has a set of marks associated with it,
possibly empty. The language includes setmark and getmarks
forms for placing and retrieving marks, respectively. These sets are
described using a finite function syntax; the implication is that later
bindings (extensions) obscure earlier ones. In an implementation of
this model, the memory used by obscured bindings may safely be
reclaimed.

To define the legal locations for reductions, we use evaluation
contexts in the style of Felleisen and Hieb (Felleisen and Hieb
1992). The set of evaluation contexts is defined by the sets E and
F . The elements of E are obtained by replacing F ’s with E’s
in the definition of F and by adding the sf context. The only
difference between the two is that F cannot include sf boundaries;
this restriction is used to decompose evaluation contexts into nested
sequences of activation records, and is required, for instance, in the
reduction of return.

The language definition is parameterized by a set of primitive
operations and a partial function δ that maps an operation and a
sequence of values to a value. We take these operations to include
array lookup.

A program state consists either of an expression with an out-
ermost frame, a value, or the final state “error.” Note that this set
is closed under reduction; that is, the result of reducing an expres-
sion in an outermost frame must be an error, a value, or another
expression wrapped in an outermost frame. The requirement that
an expression have an outermost frame simplifies the presentation
of stack marks and (later) of continuations.

1 We use the underlining here and elsewhere to indicate synthetic forms;
programmers would not normally write these forms, but it presents no
problems for the model if they do.



E[V ; M ; . . .] 7→ E[M ; . . .]

E[if0 (V ) {M } else {N }] 7→ E[M ] if V = 0

E[N ] otherwise

E[op(V1, . . . )] 7→ E[δ(op, 〈V1, . . .〉)]
if δ(op, 〈V1, . . .〉) is defined

E[V0(V1, . . . , Vn)] 7→ E[sf () {M [V1/x1, . . . , Vn/xn] }

if V0 = function(x1, . . . , xn){M }

error otherwise

E[sf T {F [tail V0(V1, . . . , Vn)] }] 7→ E[sf T {M [V1/x1, . . . , Vn/xn] }

if V0 = function(x1, . . . , xn){M }

error otherwise

E[sf T {F [return V ] }] 7→ E[V ]

E[sf T {V }] 7→ error

E[sf T {F [setmark(V1, V2)] }] 7→ E[sf T [V2/V1] {F [V2] }]

E[getmarks (V )] 7→ E[V2]

where E = sf T0 {F1[sf T1 { . . . Fn[sf Tn {Fn+1[ ] }] . . . }] }

and V2 = [[Ta0(V ), Ta1(V ), . . . ] | V ∈ dom(Tai), 0 ≤ a0 < a1 < ... ≤ n]

Figure 2. Reduction Rules for a JavaScript Subset that Supports Stack Marks

Sequences, applications of primitives, and function calls are
reduced normally.

The setmark expression associates a key/value pair with the
nearest frame boundary and returns the value. The getmarks ex-
pression extracts an array containing all values associated with the
given key in all of the currently active mark tables. This rule uses
an “array comprehension” syntax to choose the sub-sequence of the
tables (indexed here by the sequence a0, a1, . . .) in which the key
is bound.

Note that frames without bindings are not represented in the
result of getmarks. This is deliberate, and differentiates stack
marks from a simple stack-disclosure operation. Since the only
frames observed by the getmarks operation are those containing
marks placed by the program, it is not possible, for instance, for a
program to observe additional stack frames inserted or removed
by an optimizing compiler or a rewriting tool. By limiting the
observations possible through getmarks, we increase the number
of equivalence-preserving transformations.

3.1 Tail Position, Tail Calling
Since marks allow programs to observe tail-call relationships, tail
annotation cannot be seen as a meaning-preserving optimization;
rather, it is a part of the language evaluator. An evaluator that fails
to identify tail calls will produce different results than one that does.

For example, the program

sf () {
setmark(0,1);
return (function() {setmark(0,2);

return getmarks(0)})()}

reduces to the value [1,2]—that is, there are two mark frames with
bindings for the key 0. However, the program

sf () {
setmark(0,1);
tail (function() {setmark(0,2);

return getmarks(0)})()}

(which is the result of inserting tail annotations in the first pro-
gram) reduces to the value [2]. This is because the tail call forces
the reuse of the existing stack frame—or, put differently, forestalls
the needless insertion of an extra stack frame.

3.2 Proper Tail Recursion
If we wish to precisely define a notion of proper tail recursion
for the JavaScript language, we must follow Clinger (1998) and
define a space use function that maps a configuration of an abstract
machine onto a number representing space use, and then define as
properly tail recursive only those implementations that fall into the
same asymptotic space efficiency class as that model.

We conjecture that a straightforward transformation of our re-
duction semantics into the corresponding abstract register machine
would serve as a reasonable definition for proper tail recursion in
JavaScript.

4. Adding Stack Marks to Rhino
Mozilla’s Rhino is a Java-based implementation of JavaScript. Its
source trunk consists of approximately 60K lines of Java. It is de-
signed to be properly tail-calling, and to support first-class contin-
uations.2

In order to support stack marks for Rhino, we added a hash
table containing marks to each call frame. As the earlier semantics
shows, though, we do not want to lose the marks placed during
a call’s evaluation when it makes a tail call. To preserve marks
for their full dynamic duration, the marks placed by a procedure’s
invocation are stored in the table associated with the parent’s call
frame.

Placing the marks in the parent call frame, however, creates an-
other problem: when a procedure returns, shortening the chain of
call frames, we must ensure that the marks stored during the final
frame’s existence are explicitly removed. This cleanup cost is in-

2 These continuations—like our stack marks—are defined at the granularity
of frames, as discussed in section 8



NON-TAIL ` M0 ↪→ M ′
0 · · ·

C ` [M0, . . . ] ↪→ [M ′
0, . . . ]

NON-TAIL ` M0 ↪→ M ′
0 · · ·

C ` M0; . . . ↪→ M ′
0; . . .

NON-TAIL ` M ↪→ M ′

C ` function(x, . . . ) {M } ↪→ function(x, . . . ) {M ′
}

TAIL ` M ↪→ M ′

C ` return M ↪→ return M ′

NON-TAIL ` M0 ↪→ M ′
0 · · ·

TAIL ` M0(M1, . . . ) ↪→ tail M ′
0(M

′
1, . . . )

NON-TAIL ` M0 ↪→ M ′
0 · · ·

NON-TAIL ` M0(M1, . . . ) ↪→ M ′
0(M

′
1, . . . )

NON-TAIL ` M0 ↪→ M ′
0 NON-TAIL ` M1 ↪→ M ′

1

C ` setmark(M0, M1) ↪→ setmark(M ′
0, M

′
1)

NON-TAIL ` M ↪→ M ′

C ` getmarks(M) ↪→ getmarks(M ′
)

NON-TAIL ` M0 ↪→ M ′
0 · · ·

C ` op(M0, . . . ) ↪→ op(M ′
0, . . . )

NON-TAIL ` M0 ↪→ M ′
0

C ` M1 ↪→ M ′
1 C ` M2 ↪→ M ′

2

C ` if0 (M0) {M1 } else {M2 } ↪→ if0 (M ′
0) {M ′

1 } else {M ′
2 }

Figure 3. Inferring the placement of tail annotations

curred whenever a non-tail return is evaluated. We have therefore
shifted the administrative burden from once-per-tail-call to once-
per-return, and equivalently once-per-non-tail-call. Since both op-
erations are constant-time, neither affects the asymptotic running
time of a program. We believe that our choice makes for a some-
what simpler implementation.

Adding support for setmark and getmarks to Mozilla’s Rhino
implementation of JavaScript was remarkably easy. We added a
field to each call frame and implemented routines to store and
retrieve these marks. This required fewer than 100 lines of code. We
added support for the setmark and getmarks primitive operators
to the parser, again using fewer than 100 lines of code.

5. A Simple Debugger
In order to check the utility of stack marks in JavaScript, we built
a simple experimental debugger that uses stack marks—much like
the MzScheme stepper—as its only interface to the runtime system.

Stack marks provide a way to associate key-value pairs with
the activation frames and thereby observe the dynamic program
state. We built our debugger as an annotator that transforms the
source code into target source code with setmark constructs.
These setmark expressions capture the values that the user needs
to observe during run time. Our debugger places a setmark ex-
pression at the beginning of every function body, and before each
function call. The mark at the start of the function body captures
the values of the arguments and local variables, while the marks
inserted before function calls capture information about the source
code position where the calls are made.

Our debugger models the breakpoints of a traditional debugger
using calls to a break function, notable for the fact that it has no
privileged access to the runtime system, as it uses the getmarks
primitive to retrieve and display its information.

Example 1 of figure 4 is a simple JavaScript program, while
example 2 is the same program with (substantially simplified) de-
bugging annotations inserted. We see that the debugger has added
a setmark to the start of the function body to capture the values
of the arguments and local variables. We also notice a setmark ex-
pression before every function call to capture the line number in the
source code where the call is made.

Example 1 :
function f(m, n){
if0 (n){

breakpoint() ;
Return m;

}
else{
return tail f( n ∗ m , n − 1) ;

}
}

f(1, 1)

Example 2 :
function f(m, n){
setmark(“key”, [“f”, m, n])
if0 (n){
setmark(“key”, [“f”, m, n, “breakpoint”, 3]) ;
breakpoint() ;
return m;

}
else{
setmark(“key”, [“f”, m, n, “f”, 6]) ;
return tail f( n ∗ m , n − 1) ;

}
}

f(1, 1)

Figure 4. Inserting Debugging Annotations in a Simple JavaScript
Program



5.1 Implementing the Debugger
Implementing the debugger turned out to be substantially harder
than adding stack marks to the language. In particular, the debugger
requires a syntactic transformation on the source code that is a great
deal more difficult in Rhino JavaScript than it would have been in
a language with a hygienic macro system.

Lacking such a system, we designed our transformation as a
mapping from abstract syntax trees to abstract syntax trees. This
was laborious, because the abstract syntax trees generated by Rhino
observed internal invariants that were hard to deduce and preserve.
For instance, each abstract syntax tree contains a reference to a
source string; faking these references in inserted code cost us sub-
stantial time and effort.

Another alternative would have been to implement the transfor-
mation as a textual source-to-source transformation—essentially, to
find or generate our own parser (and its inverse). This would have
been more portable, and the end result would have been more easily
inspected. Given the syntactic complexity of JavaScript however,
this probably would have required even more work.

This experience served to highlight the significance of Scheme’s
hygienic system. Either of these two approaches would have been
substantially simpler in Scheme.

Figure 5 illustrates the debugger output for two simple JavaScript
programs. In the first example we see a function that makes recur-
sive calls. When a function call is made a new call frame is allo-
cated and a new set of marks are associated with that frame. In the
second example we see a function that makes recursive calls at the
tail position. Calls made at tail position reuse the stack frame of the
caller. Hence in this case their marks overwrite the marks place by
their caller.

5.2 What About Stack Traces?
One objection to such a debugger is that—since it observes the eli-
sion of stack frames—it produces less information than a traditional
debugger. That is, the call frames reused by tail calls are no longer
available for inspection when a breakpoint occurs.

In fact, it turns out that the user can (almost) have his cake
and eat it too; by using the mark combination feature described in
section 6, the debugger may choose to preserve information about
call frames that were reused. This is possible because the lifetime
of a mark is decoupled from the lifetime of the call frame in which
it was placed.

Naturally, there is memory associated with this mark. If the
debugger chooses to retain all such information, then it would alter
the asymptotic memory use of the program, effectively turning
a tail-calling computation back into a non-tail-calling one. Note
that this would not preclude reuse of stack frames; it’s simply an
observation that this style of debugger must by definition store
a quantity of information proportional to the number of nested
dynamic calls.

An interesting alternative is implemented in Standard ML of
New Jersey(Appel and MacQueen 1991), which allows program-
mers to specify a bounded “window” of recent tail calls. That is,
for each stack frame, the debugger maintains information about the
last N tail calls that reused this frame, for a value of N specified
by the user. This guarantees that the debugger still behaves in a
tail-calling way (assuming a constant bound on the size of the de-
bugging information associated with a single stack frame), and still
gives the user most of the information he needs.

A basic observation of functional programming is that loops and
recursive procedures are interchangeable, and this suggests apply-
ing the prior technique to loops as well, allowing the debugger to
capture the values of the loop variables over the prior N iterations
without altering the asymptotic memory use of the program.

Example 1 :
function f(n){

if(n == 0){
breakpoint() ;

}
else{

return n ∗ f(n − 1) ;
}

}

f(1)

Output
Frame 1
Function: f
Arguments:
n = 0
Call at line no. 3

Frame 2
Function: f
Arguments:
n = 1
Call at line no. 6

Example 2 :
function f(m, n){

if(n == 0){
breakpoint() ;

}
else{

return f( n ∗ m , n − 1) ;
}

}

f(1, 1)

Output
Frame 1
Function: f
Arguments:
n = 1
n = 0
Call at line no. 3

Figure 5. A Simple Debugger

5.3 Benchmarks
To get a rough measure of the cost of using this debugger, we use
a pair of micro-benchmarks and also a set of benchmarks from
the online “Computer Language Benchmarks Game” (formerly the
Great Language Shootout) (Various) to evaluate the performance of
Rhino with debugging annotations. We compare the performance
of the benchmarks on Rhino with no annotations to that of Rhino
with the debug annotations enabled.

The two micro-benchmarks that we used are factorial functions
with and without tail calls. For a somewhat more realistic test,
we selected five benchmarks from the JavaScript SpiderMonkey
Suite. The recursive benchmark makes three function calls all of
which in turn make a large number of recursive calls. The partial
sum benchmark makes about hundred calls to a function that does
a series of arithmetic computations and displays the output to
the user. The N-sieve repeatedly makes two function calls both
of which perform loop iterations. The N-body makes a series of



Rhino without Rhino with
annotations debugging annotations

Factorial micro-
benchmark 16.38s 58.81s
without tail calls
(input 106)
Factorial micro-
benchmark 12.68s 69.24s
with tail calls
(input 5 ∗ 106)
Recursive
benchmark 9.68s 26.18s
(input 3)
Partial-sums
benchmark 3.86s 4.72s
(input 104)
The N-body
benchmark 24.07s 26.70s
(input 105)
The N-sieve
benchmark 22.33s 25.82s
(input 104)
Binary-trees
benchmark 83.33s 289.06s
(input 15)

Table 1. Benchmark Evaluation Results

function calls. The binary tree benchmark builds a binary tree of
height obtained from the programmer. The evaluation times are
shown in table 1.

Our simple implementation leads to a significant increase in the
size of the source code and the call stack. The increase is linearly
proportional to the number of local variables, function parameters
and function calls inside the function body. Our implementation
provides ample opportunity for optimization; for instance, we cap-
ture closures that allow us to observe mutation, even for bindings
that are never mutated; a simple analysis would allow us to avoid
the creation of these unnecessary closures. Earlier experiments sug-
gest an order of 2x speedup on some of these benchmarks.

6. Allowing Mark Combination
In this paper’s model, marks overwrite other marks with the same
context and key. That is, the statement sequence

setmark(<k>,<v1>);
setmark(<k>,<v2>);

where k, v1, and v2 are values can safely be replaced by the
sequence

setmark(<k>,<v2>);

because the second mark will overwrite the first one.
However, there are instances in which a programmer may wish

for a more expressive construct, that allows marks to be combined,
somehow. Take, for instance, the examples of exceptions, stack
inspection, contract checks, and gradual typing (Herman et al.
2007); in each of these instances, the information stored in new
stack marks is to be combined with the existing information, rather
than simply replacing it.

A tempting but faulty approach to this would be to formulate a
new mark by combining the new mark with the most recent one,
obtained using getmarks. That is, if combine is a function that
takes the old mark value and produces the new one, we might
imagine writing

var oldMarks = getmarks(<key>);
setmark(<key>,combine(oldMarks

[oldMarks.length - 1]));

to combine the old mark and the new one. This would not work,
because the getmarks primitive elides stack frames without a mark
for the given key. This means that the final element of the array
returned by a getmarks might in fact not be on the nearest frame
boundary, and that the new mark might not replace the existing one.

Surprisingly, it turns out that the proximity of the nearest mark
can be deduced, without adding new primitives, if the program
is willing to commit to providing a new mark regardless of the
existence of the old one. Here’s an example that adds one to the
value associated with key k if k has a mark binding in the nearest
frame, and binds it to one otherwise.

var oldMarks = getmarks("k");
setmark("k",78);
var newMarks = getmarks("k");
if (oldMarks.length != newMarks.length)
setmark("k",1);

else
setmark("k",oldMarks[oldMarks.length - 1] + 1);

Note that this device is contingent upon the program’s willing-
ness to place a mark regardless of whether the nearest mark is dis-
covered to be on the current frame or not.

This device is verbose, and slow, requiring the construction of
two arrays. However, once we’ve demonstrated that this operation
is expressible in the current language, we can add the correspond-
ing primitive to the language, without fear that it needlessly in-
creases the expressiveness of the language.

Figure 6 illustrates this extension to the language, using a primi-
tive setmark_c that accepts a key, as before, but in place of a value
has instead a procedure that will be applied in order to compute the
new value. In order to distinguish “no-value” from any particular
value, this procedure’s argument is wrapped in an array, which is
of length zero if no mark is present in this frame.

M = . . . | setmark_c(M, M)

E = . . . | setmark_c(E, M) | setmark_c(V, E)

F = . . . | setmark_c(F, M) | setmark_c(V, F )

and

E[sf T {F [setmark_c(V1, V2)] }] 7→
E[sf T {F [setmark(V1, V2([V3]))] }]

if T (V1) = V3

E[sf T {F [setmark(V1, V2([]))] }]

otherwise

Figure 6. Adding a mark-combination primitive

7. Dynamic Bindings
Many languages provide the ability to create dynamic bindings:
a current output port, a log file, or a current privilege level. For
instance, this is the behavior of Moreau’s “dynamic let” (Moreau
1998). One obvious way to implement such bindings in a traditional
imperative language is simply to bracket the expression in which
the binding is to be created with a pair of mutations to a global
variable or table:

var oldPrivileges = privileges;
privileges = noPrivileges;



<some code>
privileges = oldPrivileges;

However, stack marks provide a natural way to implement such
bindings, with two natural advantages over the typical “global
mutations bracketing an expression” solution. First, they preserve
tail calling, because no additional work is required to undo the
binding. Secondly, they respect context manipulations. That is,
a computation that abandons a portion of the context will also
abandon the corresponding bindings. Similarly, a computation that
reinstates a context will also reinstate the bindings associated with
that context.

The natural way to implement dynamic bindings using stack
marks would be to associate a unique key with each binding, to use
setmark(<key>,<new-value>) to bind the value, and to refer to
the last element of the array generated by getmarks(<key>) to
obtain the most recent dynamic binding.

This solution fails to model dynamic let in the same way that a
JavaScript variable binding fails to model a “let”. That is, its extent
must be determined by the end of the procedure call.

If the programmer wishes to limit the dynamic extent of the
binding, restoring the original binding before the procedure call has
finished, the program must restore the earlier bindings by explicitly
overwriting the existing one. Unfortunately, this means that that
leaving the scope of a dynamic binding may require the placement
of a “dummy,” or false mark. This is not a serious problem, because
the progrmmer will be aware of these dummies, and because the
number of such dummies is bounded by the number of stack frames
currently active. However, it does provide an additional small piece
of evidence for the clumsiness of frame-based models.

8. First-Class Continuations
Many dynamic languages provide some facility for manipulating
dynamic context: continuations, delimited continuations, excep-
tions, and the like. Rhino supports “call/cc”-style continuations
(Sperber et al. 2007), with a twist; since JavaScript’s notion of con-
text is inextricably bound to stack frames, the continuation-capture
operation captures only the portion of the context outside the near-
est frame boundary.

To model this, we can introduce a new continuation-capturing
primitive, and a new class of continuation values, shown in figure
7. The reduction rules in figure 8 for continuation capture show the
truncation of the context at the innermost sf frame boundary.

Note that programmers who wish to obtain the more standard
sort of continuation may do so by wrapping the NewCont in an
immediately-called thunk: function(){NewCont}().

Since stack marks are a part of the continuation, capture and
invocation of continuation naturally respects stack marks. That is,
a computation that abandons a portion of the context will also
abandon the corresponding stack marks. Similarly, a computation
that reinstates a context will also reinstate the bindings associated
with that context.

Extending the tail-inserting `S relation to include the new lan-
guage forms is straightforward though syntactically cumbersome
because of the need to apply it to the evaluation contexts inside of
continuation values.

M = . . . | NewCont | 〈〈E〉〉
V = . . . | 〈〈E〉〉

Figure 7. Extending the language to include continuations

E[sf T {F [NewCont] }] 7→ E[sf T {F [〈〈E[sf T { [ ] }]〉〉] }]

E[〈〈E′〉〉(V )] 7→ E′[return V ]

Figure 8. Reduction rules for continuation operations

9. Exceptions with Tail Calls
In a language with dynamic bindings and continuations, we may
implement exceptions without direct support for them, and without
losing the ability to reuse stack frames. In particular, a try block
consists of the dynamic binding of an exception-handler key to a
new exception-handling procedure that contains a reference to the
existing exception handler. A throw consists of an invocation of
the most recent exception handler with the value being thrown.

Rather than precisely define the transformation, we illustrate
it with an example. To simplify the reading of the example, we
include several features that are not a part of the model that we have
provided. We use strings in place of numbers to make our constants
more legible, we assume the existence of local variables. Our set
of primitives is taken to include array reference and manipulation
operations.

Finally, this example refers to several functions whose imple-
mentations are straightforward. In particular:

• pushMaker : a curried function that takes a and [] to [a], and
a and [[b, ...]] to [b, ..., a]

• popMaker : a function that takes [] to [] and [[b, ..., a]] to
[b, ...].

• lastExnHandler : a function that takes [..., [a, ..., b], [], ...] to
b (that is, it finds the last element of the flattened array).

With these assumptions, we can transform the program:

g();
try {
h();
} catch (err) {
i();
}
j();

. . . into:

g();
var t = function() {return [0,NewCont];}();
if0 (t[0]) {
setmark_c ("exnkey",pushMaker(t[1]));
h();
setmark_c ("exnkey",popMaker);

} else {
var err = t[1];
setmark_c ("exnkey",popMaker);
i();

}
j();

The try block is modeled by a continuation capture, followed
by an if0 test that has the flavor of a fork system call. If the
first element of the returned array is 0, then this is the return from
the initial continuation capture, and the body of the try block is
evaluated. If the first element of the returned array is 1, then this
is the invocation of an exception, and we evaluate the catch block
with err bound to the thrown value. In either case, we continue by
evaluating the remainder of the body.

The implementation of throw is simpler:

throw "someExn";



. . . turns into:

lastExnHandler(getmarks("exnhandler"))
([1,"someExn"]);

Note that this implementation of exceptions permits the place-
ment of tail calls in the body of the try block. In such a scenario,
the remainder of the body is safely captured in the stored continu-
ation, which appears in a mark, and it is safe to reuse the existing
stack frame for a tail call.

Furthermore, this implementation technique does not invalidate
the earlier specification for the placement of tail expression wrap-
pers. That is, we may take a program that uses this technique for ex-
ceptions and apply the earlier transformation and obtain a program
that operates as we expect exceptions to.

10. Stack Inspection
In this paper, we have by no means done justice to all the possible
language tools and features that may be built upon stack marks.
Stack inspection is one of these features.

Stack inspection (Wallach et al. 1997, 2000; Karjoth 2000;
Gong 1999; Fournet and Gordon 2002) is a security protocol that
attempts to prevent malicious code from evaluating certain expres-
sions. The core idea is that when the evaluator reaches a “risky”
expression, it examines the stack frames (hence the name) to make
sure that there is an unbroken chain of “trusted” frames from the
current frame all the way to a trusted frame that has explicitly au-
thorized this kind of risky expression.

Stack inspection would appear to be incompatible with tail
calling, since the stack frames no longer correspond in a one-to-
one way with the dynamically nested calls, and it may be the case
that an untrusted frame has been reused, thus making a check that
should fail into one that passes.

However, it turns out that this is not the case (Clements and
Felleisen 2004). By placing the information about trust into stack
marks, and by using a mark-combining protocol, we can guarantee
that this information is not lost. In fact, we can prove that if the
set of risky categories is bounded, then an implementation that
tracks this information using stack marks consumes asymptotically
no more space than one for which this information is asserted to
take no space at all.

This work applies without change to JavaScript.

11. Related Work
This paper builds directly upon earlier work on MzScheme’s con-
tinuation marks (Clements et al. 2001; Flatt 1995–2008).

This paper is also indebted to other earlier work on the basic
notion of building a debugger based on annotation (Tolmach and
Appel 1995; Kellomäki 1993).

This paper attempts to formulate a notion of tail calls for
statement-based languages. In many ways, this draws directly on
Landin’s SECD machine (Landin 1964), and is also related to
Ramsdell’s tail-recursive SECD machine (Ramsdell 1999). Schinz
and Odersky (Schinz and Odersky 2001) discuss the problems of
compiling tail-calling languages into a language whose evaluator
(the JVM) does not provide support for tail calls.

12. Conclusion
Adding stack marks to Rhino was refreshingly straightforward.
Though this prevents us from claiming victory over a difficult tech-
nical problem, it strongly validates our central claim, which is that
stack marks are an easy addition to most stack-based languages.

Our work thus far has been on the simplest possible implemen-
tation of stack marks, and on the simplest possible definition of a

debugger that uses them. A natural next step would be to seek to im-
prove the implementation of stack marks, to show how to add them
to Rhino’s compiling evaluator as well as its “level-zero” evaluator,
and to improve the utility and efficiency of the associated debugger.
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